

CHEMISTRY

BOOKS - MTG WBJEE CHEMISTRY (HINGLISH)

REDOX EQUILIBRIA

Wb Jee Workout

1. The number of electrons required to balance the following equation ,

$$NO_3^- + 4H^+ + e^-
ightarrow 2H_2O + NO$$
 is

A. 5

B. 4

C. 3

Answer: C

View Text Solution

2. The oxidation state of osmium (Os) in OsO_4 is

A. +7

B. + 6

 $\mathsf{C.}+4$

D. + 8

Answer: D

3. when $KMnO_4$ acts as an oxidizing agent and ultimately forms MnO_4^{2-} , MnO_2 , Mn_2O_3 and Mn^{2+} then the number of electrons transferred in each case respectivelty is

- A. 4,3,1,5
- B. 1,5,3,7
- C. 1,3,4,5
- D. 3,5,7,1

Answer: C

- **4.** The average oxidation number of sulphur in $Na_2S_4O_6$
 - A. 1.2
 - B. 2.5

C. 3

D. 2

Answer: B

View Text Solution

5. The oxidation states of sulphur in the anions $SO_3^{2-}S_2,\,O_4^{2-}\,\,\,{
m and}\,\,\,S_2O_6^{2-}$ follow the order

A.
$$S_2 O_4^{2\,-} \, < S O_3^{2\,-} \, < S_2 O_6^{2\,-}$$

$$\mathrm{B.}\,SO_3^{2\,-} < S_2O_4^{2\,-} < S_2O_6^{2\,-}$$

C.
$$S_2O_4^{2-} < SO_6^{2-} < S_2O_3^{2-}$$

D.
$$S_2 O_6^{2\,-} < S_2 O_6^{2\,-} < S O_3^{2\,-}$$

Answer: A

view text Solution

6. In the reaction

 $2KMnO_4 + 16HCI
ightarrow 5CI_2 + 2MnCI_2 + 2KCI + 8H_2O$ the reduced product is

A. CI_2

B. $MnCI_2$

 $\mathsf{C}.\,H_2O$

D. KCI

Answer: B

View Text Solution

7. In which one of the following reactions, nitrogen is not reduced?

A.
$$NO_2 o NO_2^-$$

B.
$$NO_3^- o NO$$

C.
$$NO_3^-
ightarrow NH_4^+$$

D.
$$N{H_4}^+
ightarrow N_2$$

Answer: D

8. In the following reaction, which is the species being oxidized?

$$2F{e}^{3\,+}\,{}_{(\,aq)}\,+2I^{\,-}\,{}_{(\,aq)}\,+2F{e}^{2\,+}_{(\,aq)}$$

A.
$$Fe^{3\,+}$$

$$\mathsf{B.}\,I^{\,-}$$

C.
$$I_2$$

D.
$$Fe^{2+}$$

Answer: B

- **9.** The brown complex obtained in the detection of nitrate radical is formulated as $\big[Fe(H_2O)_5NO\big]SO_4$. What is the oxidation number of Fe in this complex?
 - A. + 1
 - B. + 2
 - C. + 3
 - D. 0

Answer: A

10. Which of the following statements is not correct?

- A. Potassium permanganate is a powerful oxidising substance.
- B. Potassium permanganate on treatment with conc. H_2SO_4 forms manganese heptoxide.
- C. The equivalent mass of $K_2Cr_2O_7$, in acidic medium is 73.5.
- D. Potassium dichromate oxidizes a secondary alcohol into a ketone.

Answer: C

View Text Solution

11. $Cr_2O_7^{2-} + X \xrightarrow{H^+} Cr^{3+} + H_2O +$ oxidised product of X ,X in the above reaction cannot be

A.
$$C_2 O_4^{2\,-}$$

B. Fe^{2+}

 $\mathsf{C.}\,SO_4^{2\,-}$

D. $S^{2\,-}$

Answer: C

12. When a manganous salt is fused with a mixture of KNO_3 and solid NaOH the oxidation number of Mn changes from +2 to

 $\mathsf{A.}+4$

B.+3

 $\mathsf{C.}+6$

D. + 7

Answer: C

View Text Solution

13. In the reaction

$$K_2Cr_2O_7 + XH_2SO_4 + YSO_2
ightarrow K_2SO_4 + Cr_s(SO_4)_3 + ZH_2O$$

X,Y,Z are

A. 1,3,1

B. 4,1,4

C. 3,2,3

D. 2,1,2

Answer: A

14. Which of the following is a redox reaction?

A. H_2SO_4 with NaOH

B. in atmosphere , O_3 from O_2 by lightning

C. Nitrogen oxides from nitrogen and oxygen by lightning

D. Evaporation of H_2O

Answer: C

15. The oxidation number of sulphur in $S_8,\,S_2,\,F_2,\,H_2S$ respectively are

A. 0,+1 and -2

B. +2, +1 and -2

C. 0, +1 and +2

D. -2, +1 and -2

Answer: A

View Text Solution

16. The reaction $3CIO^-_{~(aq)} o CIO^-_{(aq)} + 2CI^-_{~(aq)}$ is an example of

A. oxidation reaction

B. reduction reaction

C. disproportionation reaction

D. decomposition reaction.

Answer: C

Viou Toxt Solution

view lext solution

17. For decolouration of 1 mole of $KMnO_4$, the moles of H_2O_2

required is

- A. 1/2
- B.3/2
- $\mathsf{C.}\,5/2$
- D. 7/2

Answer: C

View Text Solution

18. The standard reducation potential $E^{\,\circ}$ for half reactions are

 $Zn
ightarrow Zn^{2\,+}\,+2e^{\,-\,,E^{\,\circ\,}=\,-\,0.76V}$

 $Fe o FE^{2\,+} + 2e^{\,-}, E^{\,\circ} = \,-\,0.41V$

the EMF of the cell reaction

$$Fe^{2+}+Zn
ightarrow Zn^{2+}+Fe$$
 is

 $\mathsf{A.}-0.35\mathsf{V}$

B.+0.35V

 $\mathsf{C.} + 1.17V$

D. - 1.17V

Answer: B

19. Oxidation state of sulphur in H_2S is

- A. -1
 - B. + 1
 - $\mathsf{C.} + 2$

$$D.-2$$

Answer: D

View Text Solution

20. Equivalent mass of oxidising agent in the reaction

$$SO_2 + 2H_2S
ightarrow 3S + 2H_2O$$
is

A. 32

B. 64

C. 16

D. 8

Answer: C

21. In the reaction

$$2FeCI_3 + H_2S
ightarrow 2FECI_2 + 2HCI + S$$

- A. $FeCl_3$ acts as an oxidising agent
- B. both H_2S and $FeCl_3$ are oxidised
- C. $FeCI_3$ is oxidised while H_2S is reduced
- ${\sf D.}\ H_2{\sf S}$ acts as an oxidising agent

Answer: A

- **22.** The oxidation state of chromium in $\left[Cr(PPh_3)_3(CO)\right]$ is
 - A. +3
 - B. + 8

C. 5

D. 6

Answer: C

View Text Solution

23. Consider a titration of $K_2Cr_2O_7$ solution with acidified Mohr's salt solution using diphenylamine as indicator. The number of moles of Mohr's salt required per mole of dichromate is

A. 3

B. 4

C. 5

D. 6

Answer: D

24. Equivalent weight of MnO_4^- in acidic, weakly basic and neutral medium are in the ratio of

A. 3:5:15

B. 5:3:1

C. 5:1:3

D. 3:5:5

Answer: D

View Text Solution

25. The reaction of $KMnO_4$ and HCl results in

A. oxidation of Mn in $KMnO_4$ and production of Cl_2

B. oxidation of Mn in $KMnO_4$ and production of H_2

C. reduction of Mn in $KMnO_4$ and production of Cl_2

D. none of these

Answer: C

26. Which of the following is a redox reaction?

A.
$$NaCI + KNO_3
ightarrow NaNO_3 + KCI$$

B.
$$CaC_2O_4 + 2HCI
ightarrow CaCI_2 + H_2C_2O_4$$

C.
$$Mg(OH)_2 + 2NH_4Ci
ightarrow MgCI_2 + 2NH_4OH$$

$$\text{D. } Zn + 2AgCN \rightarrow \ + Zn(CN)_2$$

Answer: D

View Text Solution

27.
$$MnO_4^- + 8H^+ + 5e^{-\to}Mn^{2+} + 4H_2O, E^\circ = 1.51V$$

$$MnO_4^- + 4H^+ + 2e^{-
ightarrow} Mn^{2+} + 2H_2O, E^\circ = 1.23V$$

 $E_{MnO_4^-\mid MnO_2}$ is

- A. 1.70v
- $\mathsf{B.}\ 0.91V$
- C. 1.37V
- $\mathsf{D.}\ 0.548V$

Answer: A

28. The standard reduction potential values of three metallic cations X, Y and Z are 0.52 V, -3.03 V and -1.18 V respectively. The order of reducing power of the corresponding metal is

- A. YgtZgtX
- B. XgtYgtZ
- C. ZgtYgtX
- D. ZgtXgtY

Answer: A

View Text Solution

29. The equivalent weight of potash alum

 $(K_2SO_4.\ Al_2(SO_4)_3.24H_2O)$ is

A. M

$$\mathrm{B.}\;\frac{M}{2}$$

$$\operatorname{C.}\frac{M}{6}$$

D.
$$\frac{M}{8}$$

Answer: D

View Text Solution

30. For the redox reacton

$$Cr_2O_7^{2\,+}\,+H^{\,+}\,+NI
ightarrow\,Cr^{3\,+}\,+NI^{2\,+}\,+H_2O$$

the correct coefficients of the reactants for the balanced reaction

are

$$Cr_{2}O_{7}^{2\,-}NIH^{\,+}$$

A. 13 14

B. 2 3 14

C. 1116

D. 3 3 1 2

Answer: A

View Text Solution

31. Consider the following reaction,

$$5H_2O_2 + xCIO_2 + 2OH^-
ightarrow xCI^- + yO_2 + H_2O$$
 the reactin is balanced if

A. x=5,y=2

, 0

B. x = 2, y = 5

C. x = 4, y = 10

D. x=5,y=5

Answer: B

32. For the reaction

 $M^X+MnO_4^- o MO_3^-+Mn^{2+}+1/\circ O_2$ if one mole of MnO_4^- oxidises 1.67 moles of M^+ to MO_3^- then the value of x in the reaction is

A. 5

B. 3

C. 2

D. 1

Answer: C

33. A mole of N_2H_4 loses ten moles of electrons to form a new compound Y. Assuming that all the nitrogen appears in the new compound, what is the oxidation state of nitrogen in Y? (There is no change in the oxidation number of hydrogen.)

- A. -1
- $\mathsf{B.}-3$
- $\mathsf{C.} + 3$
- D. + 5

Answer: C

View Text Solution

34. The number of electrons involved in the reduction of nitrate ion to hydrazine is

- A. 8
- B. 7
- C. 5
- D. 3

Answer: B

35. A compound of Xe and F is found to have 53.3% Xe (atomic weight=133). Oxidation number of Xe in this compound is

- $\mathsf{A.} + 2$
- B. 0
- $\mathsf{C.}+4$
- $\mathsf{D.}+6$

Answer: D

View Text Solution

36. A cell is represented by $Zn\Big|Zn^{++}_{(aq)}\Big|\Big|Cu^{++}_{(aq)}\Big|Cu$ given $Cu^{++}+2e^-\to Cu, E^\circ=+0.35V$ and $Zn^{++}+2e^-\to Zn, E^\circ=-0.763$ V Calculate emf of the cell and state whether the cell reaction will be spontaneous or nonspontaneous ?

- A. 1.113, spontaneous
- B. -0.567, non-spontaneous
- $\mathsf{C.}-1.113$, non-spontaneous
- D. 5.678 spontaneous

Answer: A

view lext Solution

37.

 $aK_2Cr_2O_7 + bKCI + cH_2SO_4
ightarrow xCrO_2CI_2 + yKHSO_4 + zH_2O_4$

the above equation balances when

A. a=2, b=4, c=6 and x=2, y=6, z=3

B. a=4 ,b=2 ,c=6 and x=6 ,y=2 ,z=3

C. a = 6, b=4, c= 2 and x = 6, y = 3, z = 2

D. a = 1, b = 4, c = 6 and x=2, y = 6, z = 3

Answer: D

38. Consider the following half-cell reactions.

I.
$$A+e^-\longrightarrow A^-;$$
 $E^\circ=0.96 \text{ V}$
II. $B^-+e^-\longrightarrow B^{2-};$ $E^\circ=-0.12 \text{ V}$
III. $C^++e^-\longrightarrow C;$ $E^\circ=+0.18 \text{ V}$
IV. $D^{2+}+2e^-\longrightarrow D;$ $E^\circ=-1.12 \text{ V}$

What combination of two half-cells would result in a cell with the

largest potential?

A. I and II

B. I and III

C. I and IV

D. II and IV

Answer: C

39. MnO_4 ions are reduced in acidic condition to Mn^{2+} ions whereas they are reduced in neutral condition to MnO_2 . The oxidation of 25 mL of a solution X containing Fe^{2+} ions required in acidic condition 20 mL of a solution Y containing MnO_4 ions. What volume of solution Y would be required to oxidise 25 mL of solution X containing Fe^{2+} ions in neutral condition?

- A. 11.4 mL
- B. 12.0 mL
- C. 33.3 mL
- D. 35.0 mL

Answer: C

40. The standard reduction potential of Ag, Cu, Co and Zn are 0.799, 0.337,-0.277 and 0.762 V respectively. Which of the following cells will have maximum cell emf?

A.
$$Znig|Zn^{2\,+}\left(1M
ight)ig|ig|Cu^{2\,+}\left(1M
ight)ig|Cu$$

B.
$$Znig|Zn^{2+}(1M)ig|ig|Ag^+(1M)ig|Ag$$

C.
$$Cuig|Cu^{2+}(1M)ig|ig|Ag^+(1M)ig|Ag$$

D.
$$Znig|Zn^{2+}(1M)ig|ig|Co^{2+}(1M)ig|Co$$

Answer: B

View Text Solution

41. The equivalent weight of HNO_3 (molecular weight = 63) in the following reaction is

 $3Cu + 8HNO_3
ightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$

A.
$$\frac{4 \times 68}{3}$$

B.
$$\frac{63}{5}$$

$$\mathsf{C.}\,\frac{63}{3}$$

D.
$$\frac{63}{8}$$

Answer: A

View Text Solution

42. Consider the following experimental facts. I. When Cl_2 gas is passed into KI solution containing $CHCl_3$, violet colour appears in $CHCl_3$ layer. II. When Cl_2 gas is passed into KBr solution containing $CHCl_3$, orange colour appears in $CHCl_3$ layer. III. When Brą gas is passed into KI solution containing $CHCl_3$, violet colour appears in $CHCl_3$ layer. Select the correct experimental facts.

- A. I and II
- B. I and III
- C. II and III
- D. I, II and III

Answer: D

43. Li occupies higher position in the electrochemical series of metals as compared to Cu since

A. the standard reduction potential $Li^+/ ext{Li}$ is lower than that

of $Cu^{2\,+}$ /Cu

B. the standard reduction potential of $Cu^{2\,+}$ /Cu is lower than

that of Li^{2+} /Li

C. the standard oxidation potential of Li^{2+} /Lit is lower than

that of
$$Cu/Cu^{2+}$$

D. Li is sinaller in size as compared to Cu.

Answer: A

View Text Solution

44. The emf of the cell,

 $Znig|Zn^{2+}(0.05M)ig|\mid Fe^{2+}(0.002M)Feat298K$ is 0.2957 V then th value of equilibrium constant for the cell reaction is

- **A.** $e^{\frac{0.34}{0.0295}}$
- B. $10^{\frac{0.34}{0.0295}}$
- C. $10^{\frac{0.25}{0.0295}}$
- **D.** $10^{\frac{0.25}{0.0591}}$

Answer: B

View Text Solution

45. 3.92 g//L of a sample of ferrous ammonium sulphate reacts completely with 50 mL $\frac{N}{10}KMnO_4$ solution the percentage purity of the sample is

- A. 50
- B.78.4
- C.80.0
- D. 39.2

Answer: A

46. Which of the following statements is/are correct regarding the given reaction?

$$xCu_3P + CrO_7^{2\,-} o Cu^{2\,+} + H_3PO_4 + Cr^{3\,+}$$

A. Cu in Cu_3 P is oxidised to Cu^{2+} and P in Cu_3 P is also oxidised to PO_4^{3-}

B. Cu in Cu_3 P is oxidised to $Cu^{2\,+}$ wheres P In Cu_3 P is reduces to H_3PO_4

C. 11 electrons are involved in the conversion of $Cu_3P \;\; {
m to} Cu^{2+} \;\; {
m and} \;\; H_3PO_4$

D. the value of X is 6.

Answer: A::C::D

47. Photographic paper is developed with alkaline hydroquinone.

$$2AgBr + 2OH^{-} + \bigcirc OH \longrightarrow O + 2Ag + 2H_{2}O + 2Br^{-}$$

select the correct statements

- A. Hydroquinone is the oxidant.
- B. Ag^+ is the oxidant.
- C. Br is the oxidant.
- D. Ag^+ is the reductant.

Answer: B

View Text Solution

48. Which of the following elements show fractional oxidation state in any of their compounds?

A. P

B. CI

C. I

D. N

Answer: C::D

View Text Solution

49. When Cl_2 is passed through hot NaOH, oxidation number of Cl changes from

A. `-1 "to" 0

- B. 0 to -1
- C. 0 to +7
- D. 0 to +5

Answer: B::D

View Text Solution

50. For the given reactions, which of the following statements are true?

$$KI + K_3 \big[Fe(CN)_6 \big] \xrightarrow[H_2SO_4]{\text{dilute}}_{H_2SO_4} \xrightarrow[\text{darr Zn SO}_4)(\textit{Brownishyellowsolution}}$$

$$\underbrace{\text{Brownish yellow filtrate}}_{\text{white precipitate}} + \underbrace{\downarrow Na_2S_2O_4}_{\text{colourless solution}}$$

- A. The first reaction is a redox reaction.
- B. White precipitate is of $Zn_{3}igl[Fe(CN)_{6}igr]_{2}$

- C. Addition of starch solution to filtrate gives blue colour.
- D. White precipitate is soluble in NaOH solution.

Answer: A::C::D

View Text Solution

51. Which of the following statements are not true about the following decomposition reaction?

 $2KCIO_3
ightarrow 2KCI + 3O_2$

- A. Potassium is undergoing oxidation.
- B. Chlorine is undergoing oxidation.
- C. Oxygen is reduced
- D. None of the species are undergoing oxidation or reduction.

Answer: A::B::C::D

52. Consider the follow redox reaction and select the correct option (s).

$$2SO_2O_3^{2\,-} + I_2
ightarrow S_4O_6^{2\,-} + 2I^{\,-}$$

A. $S_2 O_3^{2-}$ gets reduced to $S_4 O_6^{2-}$

B. $S_2O_3^{2\,-}$ gets oxidised to $S_4O_6^{2\,-}$

C. I_2 gets reduced to $I^{\,-}$

D. I_2 gets oxidised to I^-

Answer: B::C

View Text Solution

53. The oxidation number of Mn is +2 in

- A. manganese oxide
- B. manganese chloride
- C. manganese sulphate
- D. potassium permanganate

Answer: A::B::C

View Text Solution

54. Which of the following are redox reactions?

- A. $BaCI_2 + H_2SO_4
 ightarrow BaSO_4 + 2HCI$
- B. $2CuI_2
 ightarrow 2C + I_2$
- C. $NH_3CI + NaOH
 ightarrow NaCI + NH_3 + H_2O$
- D. $snCI_2 + 2HgCI_2
 ightarrow SnCI_4 + Hg_2CI_2$

Answer: B::D

View Text Solution

55. Oxidation number of carbon is correctly given for

A.
$$rac{ ext{Compound} \quad ext{O.No.}}{HN \equiv C \quad +2}$$

$$"HN \equiv C + 2$$

B.
$$rac{ ext{Compound}}{H-C\equiv N} + 4$$

$$^{ extsf{D.}}H-C\equiv N$$
 $+4$

C.
$$\frac{\text{Compound}}{CCI_4}$$
 O.No. $+4$

D.
$$\frac{\mathrm{Compound}}{C_6H_{12}O_6}$$
 O.No.

Answer: A::C::D

View Text Solution

Wb Jee Previous Years Questions

1. The two half cell reactions of an electrochemical cell is given as

$$Ag^{+} + e^{-} \rightarrow Ag$$
; $E^{\circ}_{Ag^{+}/Ag} = -0.3995 \text{ V}$
 $Fe^{++} \rightarrow Fe^{+++} + e^{-}$; $E^{\circ}_{Fe^{+}+/Fe^{+}} = -0.7120 \text{ V}$

the value of cell EMF will be

- $\mathsf{A.}-0.3125V$
- $\mathsf{B.}\ 0.3125V$
- C. 1.114V
- D. -1.114V

Answer: B

View Text Solution

2. In aqueous alkaline solution, two electron reduction of HO_2^- gives

A.
$$HO^-$$

$$\operatorname{B.}H_2O$$

$$\mathsf{C}.\,O_2$$

$$\operatorname{D.}O_2^-$$

Answer: A

3. given the standard half -cell potentials $(E^{\,\circ})$ of the following as

$$Zn=Zn^{2\,+}\,+2e^{\,-}, E^{\,\circ}=\,+0.76V$$

$$Fe = Fe^{2+} + we^-, E^\circ = 0.41V$$

then the standard e,m,f of the cell with the reaction

$$\mathrm{A.}-0.35V$$

$$\mathsf{B.} + 0.35V$$

$$C. + 1.17V$$

$$\mathsf{D.}-1.17V$$

Answer: B

View Text Solution

4. At temperature of 298 K the emf of the following electrochemical cell

$$Ag_{\,(\,s\,)}\,ig|Ag^{\,+}(0.1M)ig|ig|Zn^{2\,+}(0.1M)ig|Zn_{\,(\,s\,)}$$

will be (given $E_{\mathrm{cell}}^{\,\circ}=~-~1.562V ig)$

$$\mathrm{A.}-1.532\mathrm{V}$$

$$\mathsf{B.}-1.503V$$

 $\mathsf{C.}\ 1.532V$

D. -3.06V

Answer: A

View Text Solution

- **5.** The formal potential of $Fe^{3+}\,/Fe^{2+}$ in a sulphuric acid and phosphoric acid mixture $(E^{\circ} = +0.61V)$ is much lower than the standard potential ($E^{\circ} = +0.77V$). This is due to
 - A. formation of the species $[FeHPO_4]$
 - B. lowering of potential upon complexation
 - C. formation of the species $[FeSO_4]^+$
 - D. high acidity of the medium

Answer: A::B

View Text Solution

