©゙’ doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MTG WBJEE CHEMISTRY (HINGLISH)

REDOX EQUILIBRIA

Wb Jee Workout

1. The number of electrons required to balance the following
equation ,
$\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+e^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}$ is
A. 5
B. 4
C. 3
D. 2

Answer: C

D View Text Solution

2. The oxidation state of osmium (Os) in OsO_{4} is
A. +7
B. +6
C. +4
D. +8

Answer: D

D View Text Solution

3. when KMnO_{4} acts as an oxidizing agent and ultimatcly forms $\mathrm{MnO}_{4}^{2-}, \mathrm{MnO}_{2}, \mathrm{Mn}_{2} \mathrm{O}_{3}$ and Mn^{2+} then the number of electrons transferred in each case respectivelty is
A. 4,3,1,5
B. 1,5,3,7
C. 1,3,4,5
D. 3,5,7,1

Answer: C

D View Text Solution

4. The average oxidation number of sulphur in $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
A. 1.2
B. 2.5
C. 3
D. 2

Answer: B

D View Text Solution

5. The oxidation states of sulphur in the anions $\mathrm{SO}_{3}^{2-} \mathrm{S}_{2}, \mathrm{O}_{4}^{2-}$ and $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$ follow the order
A. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
B. $\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
C. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{6}^{2-}<\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$
D. $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{SO}_{3}^{2-}$
6. In the reaction
$2 \mathrm{KMnO}_{4}+16 \mathrm{HCI} \rightarrow 5 \mathrm{CI}_{2}+2 \mathrm{MnCI}_{2}+2 \mathrm{KCI}+8 \mathrm{H}_{2} \mathrm{O}$ the reduced product is
A. $C I_{2}$
B. MnCI_{2}
C. $\mathrm{H}_{2} \mathrm{O}$
D. $K C I$

Answer: B

- View Text Solution

7. In which one of the following reactions, nitrogen is not reduced?
A. $\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{2}^{-}$
B. $\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}$
C. $\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NH}_{4}^{+}$
D. $\mathrm{NH}_{4}^{+} \rightarrow \mathrm{N}_{2}$

Answer: D

- View Text Solution

8. In the following reaction, which is the species being oxidized?
$2 \mathrm{Fe}^{3+}{ }_{(a q)}+2 I_{(a q)}^{-}+2 \mathrm{Fe}_{(a q)}^{2+}$
A. $F e^{3+}$
B. I^{-}
C. I_{2}
D. $F e^{2+}$

Answer: B

D View Text Solution

9. The brown complex obtained in the detection of nitrate radical is formulated as $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$. What is the oxidation number of Fe in this complex?
A. +1
B. +2
C. +3
D. 0

Answer: A

10. Which of the following statements is not correct?
A. Potassium permanganate is a powerful oxidising substance.
B. Potassium permanganate on treatment with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ forms manganese heptoxide.
C. The equivalent mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, in acidic medium is 73.5 .
D. Potassium dichromate oxidizes a secondary alcohol into a ketone.

Answer: C

D View Text Solution

11. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{X} \xrightarrow{\mathrm{H}^{+}} \mathrm{Cr}^{3+}+\mathrm{H}_{2} \mathrm{O}+$ oxidised product of X, x in the above reaction cannot be
A. $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
B. $F e^{2+}$
C. SO_{4}^{2-}
D. S^{2-}

Answer: C

D View Text Solution

12. When a manganous salt is fused with a mixture of KNO_{3} and solid NaOH the oxidation number of Mn changes from +2 to
A. +4
B. +3
C. +6
D. +7

Answer: C

D View Text Solution

13. In the reaction
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{XH}_{2} \mathrm{SO}_{4}+\mathrm{YSO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{s}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{ZH}_{2} \mathrm{O}$
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are
A. 1,3,1
B. 4,1,4
C. 3,2,3
D. 2,1,2

Answer: A

14. Which of the following is a redox reaction?
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$ with NaOH
B. in atmosphere, O_{3} from O_{2} by lightning
C. Nitrogen oxides from nitrogen and oxygen by lightning
D. Evaporation of $\mathrm{H}_{2} \mathrm{O}$

Answer: C

D View Text Solution

15. The oxidation number of sulphur in $S_{8}, S_{2}, F_{2}, H_{2} S$ respectively are
A. $0,+1$ and -2
B. $+2,+1$ and -2
C. $0,+1$ and +2
D. $-2,+1$ and -2

Answer: A

D View Text Solution

16. The reaction $3 \mathrm{CIO}^{-}{ }_{(a q)} \rightarrow \mathrm{CIO}_{(a q)}^{-}+2 \mathrm{CI}_{(a q)}^{-}$is an example of
A. oxidation reaction
B. reduction reaction
C. disproportionation reaction
D. decomposition reaction.

Answer: C

17. For decolouration of 1 mole of KMnO_{4}, the moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ required is
A. $1 / 2$
B. $3 / 2$
C. $5 / 2$
D. $7 / 2$

Answer: C

D View Text Solution

18. The standard reducation potential E° for half reactions are
$Z n \rightarrow Z n^{2+}+2 e^{-, E^{\circ}=-0.76 V}$

$$
F e \rightarrow F E^{2+}+2 e^{-}, E^{\circ}=-0.41 V
$$

the EMF of the cell reaction

$$
\mathrm{Fe}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Fe} \text { is }
$$

A. -0.35 V
B. +0.35 V
C. +1.17 V
D. -1.17 V

Answer: B

D View Text Solution

19. Oxidation state of sulphur in $H_{2} S$ is
A. -1
B. +1
C. +2
D. -2

Answer: D

D View Text Solution

20. Equivalent mass of oxidising agent in the reaction
$\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$ is
A. 32
B. 64
C. 16
D. 8

Answer: C

21. In the reaction
$2 \mathrm{FeCI}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow 2 \mathrm{FECI}_{2}+2 \mathrm{HCI}+\mathrm{S}$
A. FeCl_{3} acts as an oxidising agent
B. both $\mathrm{H}_{2} \mathrm{~S}$ and FeCl_{3} are oxidised
C. FeCI_{3} is oxidised while $\mathrm{H}_{2} \mathrm{~S}$ is reduced
D. $\mathrm{H}_{2} \mathrm{~S}$ acts as an oxidising agent

Answer: A

- View Text Solution

22. The oxidation state of chromium in $\left[\mathrm{Cr}\left(P \mathrm{Ph} h_{3}\right)_{3}(\mathrm{CO})\right]$ is
A. +3
B. +8
C. 5
D. 6

Answer: C

D View Text Solution

23. Consider a titration of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution with acidified Mohr's salt solution using diphenylamine as indicator. The number of moles of Mohr's salt required per mole of dichromate is
A. 3
B. 4
C. 5
D. 6

Answer: D

View Text Solution

24. Equivalent weight of MnO_{4}^{-}in acidic, weakly basic and neutral medium are in the ratio of
A. $3: 5: 15$
B. 5:3:1
C. 5:1:3
D. 3:5:5

Answer: D

D View Text Solution

25. The reaction of KMnO_{4} and HCl results in
A. oxidation of Mn in KMnO_{4} and production of Cl_{2}
B. oxidation of Mn in KMnO_{4} and production of H_{2}
C. reduction of Mn in KMnO_{4} and production of Cl_{2}
D. none of these

Answer: C

- View Text Solution

26. Which of the following is a redox reaction?
A. $\mathrm{NaCI}+\mathrm{KNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{KCI}$
B. $\mathrm{CaC}_{2} \mathrm{O}_{4}+2 \mathrm{HCI} \rightarrow \mathrm{CaCI}_{2}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
C. $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{Ci} \rightarrow \mathrm{MgCI}_{2}+2 \mathrm{NH}_{4} \mathrm{OH}$
D. $Z n+2 A g C N \rightarrow+Z n(C N)_{2}$

Answer: D

D View Text Solution

27. $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-\rightarrow} \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}, \mathrm{E}^{\circ}=1.51 \mathrm{~V}$
$\mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-\rightarrow} \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}, \mathrm{E}^{\circ}=1.23 \mathrm{~V}$
$E_{\mathrm{MnO}_{4}^{-} \mid \mathrm{MnO}_{2}}$ is
A. $1.70 v$
B. 0.91 V
C. 1.37 V
D. 0.548 V

Answer: A

28. The standard reduction potential values of three metallic cations X, Y and Z are $0.52 \mathrm{~V},-3.03 \mathrm{~V}$ and -1.18 V respectively. The order of reducing power of the corresponding metal is
A. YgtZgtX
B. XgtYgtZ
C. ZgtYgtX
D. ZgtXgtY

Answer: A

D View Text Solution

29. The equivalent weight of potash alum
$\left(\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}\right)$ is
A. M
B. $\frac{M}{2}$
C. $\frac{M}{6}$
D. $\frac{M}{8}$

Answer: D

D View Text Solution

30. For the redox reacton
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2+}+\mathrm{H}^{+}+\mathrm{NI} \rightarrow \mathrm{Cr}^{3+}+\mathrm{NI}^{2+}+\mathrm{H}_{2} \mathrm{O}$
the correct coefficients of the reactants for the balanced reaction
are

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \mathrm{NIH}^{+}
$$

A. 1314
B. 2314
C. 1116
D. 3312

Answer: A

D View Text Solution

31. Consider the following reaction,
$5 \mathrm{H}_{2} \mathrm{O}_{2}+x \mathrm{CIO}_{2}+2 \mathrm{OH}^{-} \rightarrow x \mathrm{CI}^{-}+y \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$ the reactin is balanced if
A. $x=5, y=2$
B. $x=2, y=5$
C. $x=4, y=10$
D. $x=5, y=5$

View Text Solution

32. For the reaction
$\mathrm{M}^{X}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{MO}_{3}^{-}+\mathrm{Mn}^{2+}+1 / \circ \mathrm{O}_{2}$ if one mole of MnO_{4}^{-}oxidises 1.67 moles of M^{+}to MO_{3}^{-}then the value of x in the reaction is
A. 5
B. 3
C. 2
D. 1

Answer: C

D View Text Solution
33. A mole of $N_{2} H_{4}$ loses ten moles of electrons to form a new compound Y . Assuming that all the nitrogen appears in the new compound, what is the oxidation state of nitrogen in Y ? (There is no change in the oxidation number of hydrogen.)
A. -1
B. -3
C. +3
D. +5

Answer: C

D View Text Solution

34. The number of electrons involved in the reduction of nitrate ion to hydrazine is
A. 8
B. 7
C. 5
D. 3

Answer: B

- View Text Solution

35. A compound of Xe and F is found to have 53.3 \% Xe (atomic weight=133). Oxidation number of Xe in this compound is
A. +2
B. 0
C. +4
D. +6

D View Text Solution

36. A cell is represented by $Z n\left|Z n_{(a q)}^{++}\right|\left|C u_{(a q)}^{++}\right| C u$ given $C u^{++}+2 e^{-} \rightarrow C u, E^{\circ}=+0.35 V$ and
$Z n^{++}+2 e^{-} \rightarrow Z n, E^{\circ}=-0.763 \mathrm{~V}$ Calculate emf of the cell and state whether the cell reaction will be spontaneous or nonspontaneous?
A. 1.113, spontaneous
B. -0.567 , non-spontaneous
C. -1.113 , non-spontaneous
D. 5.678 spontaneous

Answer: A
37.
$a \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+b \mathrm{KCI}+c \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow x \mathrm{CrO}_{2} \mathrm{CI}_{2}+y \mathrm{KHSO}_{4}+z \mathrm{H}_{2} \mathrm{O}$
the above equation balances when
A. $a=2, b=4, c=6$ and $x=2, y=6, z=3$
B. $a=4, b=2, c=6$ and $x=6, y=2, z=3$
C. $a=6, b=4, c=2$ and $x=6, y=3, z=2$
D. $a=1, b=4, c=6$ and $x=2, y=6, z=3$

Answer: D

- View Text Solution

38. Consider the following half-cell reactions.
I. $A+e^{-} \longrightarrow A^{-}$;
$E^{\circ}=0.96 \mathrm{~V}$
1I. $B^{-}+e^{-} \longrightarrow B^{2-}$;
$E^{\circ}=-0.12 \mathrm{~V}$
III. $C^{+}+e^{-} \longrightarrow C$;
$E^{\circ}=+0.18 \mathrm{~V}$
IV. $D^{2+}+2 e^{-} \longrightarrow D$; $E^{\circ}=-1.12 \mathrm{~V}$

What combination of two half-cells would result in a cell with the largest potential?
A. I and II
B. I and III
C. I and IV
D. II and IV

Answer: C

39. MnO_{4} ions are reduced in acidic condition to Mn^{2+} ions whereas they are reduced in neutral condition to MnO_{2}. The oxidation of 25 mL of a solution X containing Fe^{2+} ions required in acidic condition 20 mL of a solution Y containing MnO_{4} ions. What volume of solution Y would be required to oxidise 25 mL of solution X containing Fe^{2+} ions in neutral condition?
A. 11.4 mL
B. 12.0 mL
C. 33.3 mL
D. 35.0 mL

Answer: C

D View Text Solution

40. The standard reduction potential of $\mathrm{Ag}, \mathrm{Cu}, \mathrm{Co}$ and Zn are $0.799,0.337,-0.277$ and 0.762 V respectively. Which of the following cells will have maximum cell emf?
A. $Z n\left|Z n^{2+}(1 M)\right|\left|C u^{2+}(1 M)\right| C u$
B. $Z n\left|Z n^{2+}(1 M)\right|\left|A g^{+}(1 M)\right| A g$
C. $C u\left|C u^{2+}(1 M)\right|\left|A g^{+}(1 M)\right| A g$
D. $Z n\left|Z n^{2+}(1 M)\right|\left|C o^{2+}(1 M)\right| C o$

Answer: B

- View Text Solution

41. The equivalent weight of HNO_{3} (molecular weight $=63$) in the following reaction is
$3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$
A. $\frac{4 \times 68}{3}$
B. $\frac{63}{5}$
C. $\frac{63}{3}$
D. $\frac{63}{8}$

Answer: A

- View Text Solution

42. Consider the following experimental facts. I. When Cl_{2} gas is passed into KI solution containing CHCl_{3}, violet colour appears in CHCl_{3} layer. II. When Cl_{2} gas is passed into KBr solution containing CHCl_{3}, orange colour appears in CHCI_{3} layer. III.

When Brą gas is passed into KI solution containing CHCI_{3}, violet colour appears in CHCl_{3} layer. Select the correct experimental facts.
A. I and II
B. I and III
C. II and III
D. I, II and III

Answer: D

D View Text Solution

43. Li occupies higher position in the electrochemical series of metals as compared to Cu since
A. the standard reduction potential $\mathrm{Li}^{+} / \mathrm{Li}$ is lower than that of $\mathrm{Cu}^{2+} / \mathrm{Cu}$
B. the standard reduction potential of $\mathrm{Cu}^{2+} / \mathrm{Cu}$ is lower than that of $L i^{2+} / \mathrm{Li}$
C. the standard oxidation potential of $L i^{2+} /$ Lit is lower than that of $C u / C u^{2+}$
D. Li is sinaller in size as compared to Cu .

Answer: A

D View Text Solution

44. The emf of the cell,
$Z n\left|Z n^{2+}(0.05 M)\right| \mid F e^{2+}(0.002 M) F e a t 298 K$ is 0.2957 V then th value of equilibrium constant for the cell reaction is
A. $e^{\frac{0.34}{0.0295}}$
B. $10^{\frac{0.34}{0.0295}}$
C. $10^{\frac{0.25}{0.0295}}$
D. $10^{\frac{0.25}{0.0591}}$

- View Text Solution

45. $3.92 \mathrm{~g} / / \mathrm{L}$ of a sample of ferrous ammonium sulphate reacts completely with $50 \mathrm{~mL} \frac{N}{10} \mathrm{KMnO}_{4}$ solution the percentage purity of the sample is
A. 50
B. 78.4
C. 80.0
D. 39.2

Answer: A

46. Which of the following statements is/are correct regarding the given reaction?
$x \mathrm{Cu}_{3} \mathrm{P}+\mathrm{CrO}_{7}^{2-} \rightarrow \mathrm{Cu}^{2+}+\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Cr}^{3+}$
A. Cu in $C u_{3} \mathrm{P}$ is oxidised to $C u^{2+}$ and P in $C u_{3} \mathrm{P}$ is also oxidised to PO_{4}^{3-}
B. Cu in $C u_{3} \mathrm{P}$ is oxidised to $C u^{2+}$ wheres P In $C u_{3} \mathrm{P}$ is reduces to $\mathrm{H}_{3} \mathrm{PO}_{4}$
C. 11 electrons are involved in the conversion of $C u_{3} P$ toCu ${ }^{2+}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. the value of X is 6 .

Answer: A::C::D

D View Text Solution

47. Photographic paper is developed with alkaline hydroquinone.

select the correct statements
A. Hydroquinone is the oxidant.
B. $A g^{+}$is the oxidant.
$\mathrm{C} . \mathrm{Br}$ is the oxidant.
D. Ag^{+}is the reductant.

Answer: B

48. Which of the following elements show fractional oxidation state in any of their compounds?
A. P
B. Cl
C. I
D. N

Answer: C::D

- View Text Solution

49. When Cl_{2} is passed through hot NaOH , oxidation number of

Cl changes from
A. '-1"to" 0
B. 0 to -1
C. 0 to +7
D. 0 to +5

Answer: B::D

D View Text Solution

50. For the given reactions, which of the following statements are true?
$\underset{\text { (excess) }}{\mathrm{KI}+\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\text { dilute }} \text { darr } \mathrm{Zn} \text { SO_4)(Brownishyellowsolution }}$ Brownish yellow filtrate
white precipitate +

$$
\downarrow N a_{2} S_{2} O_{4}
$$

colourless solution
A. The first reaction is a redox reaction.
B. White precipitate is of $Z n_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}$
C. Addition of starch solution to filtrate gives blue colour.
D. White precipitate is soluble in NaOH solution.

Answer: A::C::D

D View Text Solution

51. Which of the following statements are not true about the following decomposition reaction?
$2 \mathrm{KCIO}_{3} \rightarrow 2 \mathrm{KCI}+3 \mathrm{O}_{2}$
A. Potassium is undergoing oxidation.
B. Chlorine is undergoing oxidation.
C. Oxygen is reduced
D. None of the species are undergoing oxidation or reduction.

Answer: A::B::C::D

- View Text Solution

52. Consider the follow redox reaction and select the correct option (s).
$2 \mathrm{SO}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2} \rightarrow \mathrm{~S}_{4} \mathrm{O}_{6}^{2-}+2 \mathrm{I}^{-}$
A. $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ gets reduced to $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$
B. $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ gets oxidised to $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$
C. I_{2} gets reduced to I^{-}
D. I_{2} gets oxidised to I^{-}

Answer: B::C

D View Text Solution

53. The oxidation number of Mn is +2 in
A. manganese oxide
B. manganese chloride
C. manganese sulphate
D. potassium permanganate

Answer: A::B::C

- View Text Solution

54. Which of the following are redox reactions?
A. $\mathrm{BaCI}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCI}$
B. $2 \mathrm{CuI}_{2} \rightarrow 2 \mathrm{C}+\mathrm{I}_{2}$
C. $\mathrm{NH}_{3} \mathrm{CI}+\mathrm{NaOH} \rightarrow \mathrm{NaCI}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
D. $s n C I_{2}+2 \mathrm{HgCI}_{2} \rightarrow \mathrm{SnCI}_{4}+\mathrm{Hg}_{2} \mathrm{CI}_{2}$

D View Text Solution

55. Oxidation number of carbon is correctly given for

Compound O.No.
$H N \equiv C \quad+2$
Compound O.No.
B.
$H-C \equiv N+4$
c. Compound O.No.
$C^{C} I_{4} \quad+4$
Compound O.No.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad 0$

Answer: A::C::D

D View Text Solution

1. The two half cell reactions of an electrochemical cell is given as
$\mathrm{Ag}^{+}+e^{-} \rightarrow \mathrm{Ag}:$
$E_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\circ}=-0.3995 \mathrm{~V}$
$E_{\mathrm{Fe}^{+++} / \mathrm{Fe}^{++}}=-0.7120 \mathrm{~V}$
the value of cell EMF will be
A. -0.3125 V
B. 0.3125 V
C. 1.114 V
D. -1.114 V

Answer: B

- View Text Solution

2. In aqueous alkaline solution, two electron reduction of HO_{2}^{-} gives
A. HO^{-}
B. $\mathrm{H}_{2} \mathrm{O}$
C. O_{2}
D. O_{2}^{-}

Answer: A

- View Text Solution

3. given the standard half -cell potentials $\left(E^{\circ}\right)$ of the following as
$Z n=Z n^{2+}+2 e^{-}, E^{\circ}=+0.76 V$
$F e=F e^{2+}+w e^{-}, E^{\circ}=0.41 V$
then the standard e,m,f of the cell with the reaction
A. -0.35 V
B. +0.35 V
C. +1.17 V
D. -1.17 V

Answer: B

D View Text Solution

4. At temperature of 298 K the emf of the following electrochemical cell

$$
A g_{(s)}\left|A g^{+}(0.1 M)\right|\left|Z n^{2+}(0.1 M)\right| Z n_{(s)}
$$

will be (given $E_{\text {cell }}^{\circ}=-1.562 \mathrm{~V}$)
A. -1.532 V
B. -1.503 V
C. 1.532 V
D. -3.06 V

Answer: A

D View Text Solution

5. The formal potential of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ in a sulphuric acid and phosphoric acid mixture $\left(E^{\circ}=+0.61 V\right)$ is much lower than the standard potential $\left(E^{\circ}=+0.77 V\right)$. This is due to
A. formation of the species $\left[\mathrm{FeHPO}_{4}\right]$
B. lowering of potential upon complexation
C. formation of the species $\left[\mathrm{FeSO}_{4}\right]^{+}$
D. high acidity of the medium

Answer: A::B

