

MATHS

BOOKS - MTG WBJEE MATHS (HINGLISH)

APPLICATION OF INTEGRALS

Wb Jee Workout Category 1 Single Option Correct Type

1. The area enclosed between the curve $y = 1 + x^2$,

the Y-axis and the straight line y = 5 is given by

A.
$$\frac{14}{3}$$
 square units

- B. $\frac{7}{3}$ square units
- C. 5 square units

D.
$$\frac{16}{3}$$
 square units

Answer: D

2. The area bounded by astroid $x^{2\,/\,3} + y^{2\,/\,3} = 1$ (in

sq. units) is

A.
$$\frac{3\pi}{8}$$
 sq. units
B. $\frac{3\pi^2}{8}$ sq. units

C.
$$\frac{3\pi}{16}$$
 sq. units

D. None of these

Answer: A

Watch Video Solution

3. The area enclosed by y = 3x - 5, y = 0, x = 3 and x = 5

is

A. 12 sq. units

B. 13 sq. units

C.
$$13\frac{1}{2}$$
 sq. units

D. None of these

Answer: D

Watch Video Solution

4. The area bounded by the curves $y^2 = 4a(x+a)$ and $y^2 = 4b(b-x)$, where a, b > 0 units A. $(a+b)\sqrt{ab}$ B. $\frac{8}{3}(ab)(a^2+b^2)$

C. $rac{8}{3}\sqrt{ab}(a+b)$

D. None of these

Answer: A

6. The area bounded by the curves $y = an x, \ -rac{\pi}{3} \le x \le rac{\pi}{3}, y = ext{cot} x, rac{\pi}{6} \le x \le rac{\pi}{2}$

and the x - axis is

A. in $\sqrt{3}$

B. $\ln \sqrt{2}$

 $C. \ln 2$

$$\operatorname{D.}\ln\left(\frac{3}{2}\right)$$

Answer: C

7. Find the area of the smaller region bounded by

the ellipse
$$rac{x^2}{9}+rac{y^2}{4}=1$$
 and the line $rac{x}{3}+rac{y}{2}=1.$

A.
$$(\pi-2)~~{
m sq.~units}$$

B.
$$rac{3}{2}\pi$$
 sq. units
C. $rac{3}{2}(\pi-2)$ sq. units

D. None of these

Answer: C

8. The area of the region bounded by the curve $y=x^2$ and the line y=16 (in square units) is

A.
$$\frac{32}{3}$$

B. $\frac{256}{3}$
C. $\frac{64}{3}$
D. $\frac{128}{3}$

Answer: B

9. The area of the region bounded by parabola $y^2 = 16x$ and its locus rectum is _____

A.
$$\frac{32}{3}$$
 sq. units
B. $\frac{64}{3}$ sq. units
C. $\frac{128}{3}$ sq. units
D. $\frac{116}{3}$ sq. units

Answer: B

10. The parabola $y^2 = 2x$ divides the circle $x^2 + y^2 = 8$ in two parts. Then, the ratio of the areas of these parts is

A.
$$3\pi-2\!:\!10\pi+2$$

B.
$$3\pi+2\!:\!9\pi-2$$

C.
$$6\pi-3$$
 : $11\pi-5$

D.
$$2\pi - 9:9\pi + 2$$

Answer: B

Watch Video Solution

11. The area included between the parabolas

$$y^2 = 4x$$
 and $x^2 = 4y$ is
A. $\frac{8}{3}$ sq. units
B. 8 sq. units
C. $\frac{16}{3}$ sq. units
D. 12 sq. units

Answer: C

12. The area of the region bounded by the curves
$$y = x^3, y = \frac{1}{x}, x = 2$$
 and x - axis (in sq. units) is
A. $4 - \log_e 2$
B. $\frac{1}{4} + \log_e 2$
C. $3 - \log_e 2$
D. $\frac{15}{4} - \log_e 2$

Answer: B

13. Determine the area of the figure bounded by two branches of the curve $(y-x)^2 = x^3$ and the straight line x = 1.

A.
$$\frac{\#}{5}$$

B. $\frac{5}{4}$
C. $\frac{6}{5}$
D. $\frac{4}{5}$

Answer: D

Watch Video Solution

14. The area of the region surrounded by the urves $y=x^3$ and $y=2x^2$ (in sq. units) is A. $\frac{4}{3}$ B. $\frac{3}{4}$ $\mathsf{C}.\,\frac{2}{3}$ D. $\frac{1}{2}$

Answer: A

15. The area (in square units) bounded by the curve $y=x^3$, the x-axis and the ordinates at x=-2 and x=1 is

A. - 9 sq. units

$$\mathsf{B}.\,\frac{-15}{4} \;\; \mathrm{sq.\; units} \;\;$$

$$\mathsf{C}.\,\frac{15}{4} \quad \text{sq. units}$$

D.
$$\frac{17}{4}$$
 sq. units

Answer: D

Watch Video Solution

16. Find the area bounded by the x-axis, part of the

curve $y = \left(1 - \frac{8}{x^2}\right)$, and the ordinates at x = 2andx = 4. If the ordinate at x = a divides the area into two equal parts, then find a.

A.4 sq. units

B.2 sq. units

C. $13\sqrt{2}$ sq. units

D. $12\sqrt{2}$ sq. units

Answer: A

17. Using the method of integration, find the area of

the region bounded by the lines 5x - 2y - 10 = 0, x + y - 9 = 0 and 2x - 5y = 0

A. 10 sq. units

B. 10.5 sq. units

C. 11 sq. units

D. None of these

Answer: B

Watch Video Solution

18. The area bounded by the curve $x^2 = 4y + 4$ and

line 3x + 4y = 0 is

A.
$$\frac{25}{4}$$
 sq. units
B. $\frac{125}{8}$ sq. units
C. $\frac{125}{16}$ sq. units
D. $\frac{125}{24}$ sq. units

Answer: D

19. Using integration, compute the area of the region bounded by the curve $x^2 + y^2 = 9$.

A. 3π sq. units

B. 4π sq. units

C. 9π sq. units

D. 5π sq. units

Answer: C

20. The area bounded by the parabola

$$y = \sqrt{6x + 4}$$
, X - axis from x = 0 to x = 2 is
A. $\frac{56}{9}$ sq. units
B. $\frac{28}{9}$ sq. units
C. $\frac{56}{3}$ sq. units

D.
$$\frac{28}{3}$$
 sq. units

Answer: A

Answer: D

A.
$$\frac{7}{12}$$

B. $\frac{12}{7}$
C. $\frac{7}{6}$
D. $\frac{6}{7}$

Answer: A

3. The area bounded by the curve|x|+|y|=1is

A. 2

B.4

C. 6

D. 8

Answer: A

4. The area between the curve $x = y^2$ and x = 4which divide into two equal parts by the line x = a. Find the value of a

A. $(12)^{1/3}$ B. $(16)^{2/3}$

C.
$$(16)^{1/3}$$

D. None of these

Answer: C

5. The area cut off a parabola $4y = 3x^2$ by the straight line 2y = 3x + 12 in square units, is

A. 16

B. 21

C. 27

D. 36

Answer: C

6. The area of the region bounded by $y^2 = x$ and y = $|{\sf x}|$ is

A.
$$\frac{1}{3}$$
 sq. units
B. $\frac{1}{6}$ sq. units
C. $\frac{2}{3}$ sq. units

D. 1 sq. units

Answer: B

7. Area bounded by the curves satisfying the
conditions
$$\frac{x^2}{25} + \frac{y^2}{36} \le 1 \le \frac{x}{5} + \frac{y}{6}$$
 is given by
A. $15\left(\frac{\pi}{2} - 2\right)$ sq. units
B. $\frac{15}{4}\left(\frac{\pi}{2} - 1\right)$ sq. units
C. $30(\pi - 1)$ sq. units
D. $\frac{15}{2}(\pi - 2)$ sq. units

Answer: D

Watch Video Solution

8. If A is the area of the region bounded by the curve $y = \sqrt{3x+4}$, x axis and the line x = -1 and x = 4 and B is that area bounded by curve $y^2 = 3x + 4$, x- axis and the lines x = -1 and x = 4 then A:B is equal to

A.1:1

- **B**. 2:1
- C. 1: 2

D. None of these

Answer: C

9. Find the area of the region bounded by the curves $y = x^2 + 2$, y = x, x = 0 and x = 3.

A. 21 sq. units

B. 20 sq. units

C.
$$\frac{15}{2}$$
 sq. units
D. $\frac{21}{2}$ sq. units

Answer: D

Watch Video Solution

10. Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0 and x = 2 is(A) π (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{4}$

A. π sq. units

B.
$$\frac{\pi}{2}$$
 sq. units

C.
$$\frac{\pi}{3}$$
 sq. units

D.
$$\frac{\pi}{4}$$
 sq. units

Answer: C

Watch Video Solution

11. The area of the region bounded by the parabola $y = x^2 - 4x + 5$ and the straight line y = x + 1 is A. 1/2B. 2 C. 3 D. 9/2**Answer: D**

12. The area of the region bounded by the curves $y=x^2 \hspace{0.2cm} ext{and} \hspace{0.2cm} x=y^2 ext{ is }$ A. 1/3B. 1/2C.1/4D. 3 **Answer: A** Watch Video Solution

13. The area of the region bounded by the curve $y = x^3$, its tangent at (1, 1) and x-axis is

Answer: A

14. Area of the region bounded by y = |x| and y = -|x| + 2 is

A. 4 sq. units

B. 3 sq. units

C. 2 sq. units

D. 1 sq. units

Answer: C

15. Area bounded by $y=\sqrt{5-x^2}andy=|x-1|$

is:

(A) $\frac{5\pi - 2}{3} squates$ (B) $\frac{5\pi - 2}{4} squates$ (C) $\frac{5\pi}{4} squates$ (D) none of these

A.
$$\left(\frac{5\pi}{4} - 2\right)$$
 sq. units
B. $\left(\frac{5\pi - 2}{2}\right)$ sq. units
C. $\left(\frac{5\pi}{4} - \frac{1}{2}\right)$ sq. units
D. $\left(\frac{\pi}{2} - 5\right)$ sq. units

Answer: C

Watch Video Solution

1. The area of the region, bounded by the curves $y = \sin^{-1} x + x(1-x)$ and $y = \sin^{-1} x - x(1-x)$ in the first quadrant (in sq. units), is

B.
$$\frac{1}{2}$$

C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: A

Match Midea Calution

2. The area of the region bounded by the curve $y = 2x - x^2$ and the line y = x is

A.
$$\frac{3}{2}$$
 sq. units
B. $\frac{9}{2}$ sq. units
C. $\frac{4}{3}$ sq. units
D. $\frac{19}{6}$ sq. units

Answer: B

Watch Video Solution

3. If the area of bounded between the x-axis and the graph of $y = 6x - 3x^2$ between the ordinates x = 1 andx = a is 19 units, then a can take the value 4 or -2 two value are in (2,3) and one in (-1,0) two value are in (3,4) and one in (-2, -1) none of these

A. one value in (2, 3)

B. one value in (-2, -1)

C. one value in (-1, 0)

D. one value in (3, 4)

Answer: B::D

4. Which of the following is the possible value/values of c for which the area of the figure bounded by the curves $y = \sin 2x$, the straight lines $x = \pi/6$, x = c and the abscissa axis is equal to 1/2?

A.
$$-\frac{\pi}{6}$$

B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$

D. None of these

Answer: A::B

5. The area induced between the curves
$$y = \frac{x^2}{4a}$$

and $y = \frac{8a^3}{x^2 + 4a^2}$ is given by
A. $\frac{1}{3}(6\pi - 4)$, if $a = 1$
B. $\frac{1}{3}(4\pi + 3)$, if $a = 1$
C. $\frac{4}{3}(6\pi - 4)$, if $a = 2$
D. $\frac{1}{3}(2\pi + 3)$, if $a = 1$

Answer: A::C

- 6. The area enclosed between the curve
- $y = \log_e(x+e)$ and the coordinate axes is

A. 3 sq. units

B. 4 sq. units

C. 2 sq. units

D.1 sq. units

Answer: D

7. Draw a rough sketch of the curves $y = \sin x$ and $y = \cos x$ as x varies from 0 to $\frac{\pi}{2}$. Find the area of the region enclosed by the curves and the y-axis.

- A. 1:2
- B. $\sqrt{2}: 1$
- C.2:1
- D. 1: $\sqrt{2}$

Answer: B

8. Area included between curves

$$y = x^2 - 3x + 2$$
 and $y = -x^2 + 3x - 2$ is
A. $\frac{1}{6}$ sq. units
B. $\frac{1}{2}$ sq. units
C. 1 sq. units
D. $\frac{1}{3}$ sq. units

Answer: D

9. Find the smaller of the two areas enclosed by the

curves
$$x^2 + y^2 = 4$$
 and $y^2 = 3(2x - 1)$.

A.
$$\left(4\pi-\sqrt{3}
ight)~{
m sq.~units}$$

B.
$$rac{1}{2}ig(2\pi+\sqrt{3}ig)$$
 sq. units
C. $rac{1}{3}ig(4\pi-\sqrt{3}ig)$ sq. units

D. None of these

Answer: C

10. Find the area enclosed by the curves
$$y = 2 - |2 - x|$$
 and $y = rac{3}{|x|}$

A. $3 - 4 \log 3$ B. $\frac{4 - 3 \log 3}{2}$

C.
$$2\log 3^{3/2}$$

D. $2 - \log 3$

Answer: B::C

1. Let $f(x) = x^{2/3}, x \ge 0$. Then the area of the region enclosed by the curve y = f(x) and the three lines y = x, x = 1 and x = 8 is

A.
$$\frac{63}{2}$$

B. $\frac{93}{5}$
C. $\frac{105}{7}$
D. $\frac{129}{10}$

Answer: D

2. Let $f(x) = \max \{x + |x|, x - [x]\}$, where [x]

denotes the greatest integer $\ \leq x.$ Then the value

of
$$\int_{-3}^{3} f(x) \, \mathsf{dx}$$
 is:

A. 0

B. 51/2

C. 21/2

D. 1

Answer: C

3. Find the area of the figure bounded by the

parabolas $x=\ -2y^2, x=1-3y^2.$

A.
$$\frac{4}{3}$$
 sq. units
B. $\frac{2}{3}$ sq. units
C. $\frac{3}{7}$ sq. units
D. $\frac{6}{7}$ sq. units

Answer: A

Watch Video Solution

1. The area of the region enclosed between parabola $y^2=x$ and the line y=mx is $rac{1}{48}.$ Then the value of m is

A. - 2

B. -1

C. 1

D. 2

Answer: A::D

2. The area of the region lying above x - axis, and included between the circle $x^2 + y^2 = 2ax$ & the parabola $y^2 = ax, a > 0$ is

Answer: B

3. The area bounded by y = x + 1 and $y = \cos x$ and the x - axis, is

A.1 sq. units

B.
$$\frac{3}{2}$$
 sq. units
C. $\frac{1}{4}$ sq. units
D. $\frac{1}{8}$ sq. units

Answer: B

