

MATHS

BOOKS - MTG WBJEE MATHS (HINGLISH)

BINOMIAL THEOREM

Wb Jee Workout Category 1 Single Option Correct Type 1 Mark

1. If the sum of the coefficients in the expansion of $(p+q)^n$ is 1024, then the greatest coefficient in the expansion is

A.
$$^{10}C_5$$

B.
$$^{10}C_4$$

C.
$${}^{10}C_2$$

D. None of these

Answer: A

2. The number of terms in the expansion of
$$\left[\left(x+2y\right)^4 imes\left(x-2y\right)^4\right]^2$$
 are

Answer: C

- **3.** The terms independent of x in $\left(\frac{3}{2}x^2 \frac{1}{3x}\right)^9$ is
 - A. 6
 - B. 8

$\boldsymbol{\mathcal{C}}$	Ľ
┖.	-

D. 7

Answer: D

Watch Video Solution

4. Middle term in the expansion of $(1+x)^{4n}$ is $(\, orall \, n \in N)$

A.
$$(2n+1)^{th}$$

B. $2n^{th}$

C. $(2n-1)^{th}$

D. None of these

Answer: A

5. If the binomial coefficient of $(2r+4)^{th}$ term and $(r-2)^{th}$ term in the expansion of $(1+x)^{21}$ are equal, then the value of r equals

- A. 6
- B. 5
- C. 7
- D. 8

Answer: C

6. Given positive integers rgt1,ngt2 and the cofficients of (3r)^(th) and $(r+2)^{(th)}term \in the \exp ansionof(1+x)^{(2n)}$ are equal then, which of the following relation is correct?

$$\mathsf{A.}\, n = 3r$$

B.
$$n = 2r + 1$$

C.
$$n = 2r - 1$$

D.
$$n=2r$$

Answer: D

Watch Video Solution

7. If the sum of the coefficient in the expansion of

 $\left(lpha x^2-2x+1
ight)^{35}$ is equal to the sum of the coefficient of the

expansion of
$$(x-\alpha y)^{35}$$
 , then α =

$$A. - 1$$

B. 1

 $\mathsf{C}.0$

D. None of these

Answer: B

8. The vaule of
$$\displaystyle\sum_{r=0}^{n-1} \left(rac{C_r}{^nC_r+^nC_{r+1}}
ight)$$
 is equal to

A.
$$\frac{n(n+1)}{2}$$

$$\mathsf{B.}\;\frac{n+1}{n-1}$$

$$\mathsf{C.}\ \frac{n+1}{2}$$

D.
$$\frac{n}{2}$$

Answer: D

9. If
$$a_n = \sum_{r=0}^n \frac{1}{nC_r}$$
, then $\sum_{r=0}^n \frac{r}{nC_r}$ equals

A.
$$a_n + 1$$

B.
$$a_n - 1$$

$$\mathsf{C}.\,a_n$$

Γ	2~
υ.	$2a_n$

Answer: B

Watch Video Solution

- **10.** Number of terms in the expansion of $(1-x)^{51}ig(1+x+x^2ig)^{50}$ is
 - A. 50
 - B. 51
 - C. 100
 - D. 102

Answer: D

11. The expression

$$\left[x+\left(x^3-1
ight)^{rac{1}{2}}
ight]^5+\left[x-\left(x^3-1
ight)^{rac{1}{2}}
ight]^5$$
 is a polynomial of degree

- A. 15
- B. 7
- C. 6

D. 5

Answer: B

Watch Video Solution

12. Find the two consecutive terms in the expansion of $\left(3+2x
ight)^{74}$ so that the coefficients of powers of x are equal.

- A. 30^{th} and 31^{st} terms
 - B. 29^{th} and 30^{th} terms
 - $C.31^{st}$ and 32^{nd} terms

D. 28^{th} and 29^{th} terms

Answer: A

Watch Video Solution

- **13.** Find the coefficient of x^4 in the expansion of $\left(1+x+x^2+x^3\right)^{11}$
 - A. 330
 - B. 990
 - C. 900
 - D. 895

Answer: B

14. The coefficient of x^{53} in the expansion

$$\sum_{m=0}^{100}$$
 ^ $(100)C_m(x-3)^{100-m}2^m$ is ^ $100C_{47}$ b. ^ $100C_{53}$ c. $-^{100}C_{53}$ d.

none of these

A.
$$^{100}C_{53}$$

B.
$$^{101}C_{53}$$

D.
$$^{100}C_{48}$$

Answer: C

Watch Video Solution

15. The middle term in the expansioin of $\left(1+x
ight)^{2n}$ is

A. 2.
nC_n

B.
$$\frac{1.3.5.\dots(2n-1)}{n!}2^n$$

C.
$$2.6.10.\ldots(4n-2)$$

D. None of these

Answer: B

Watch Video Solution

16. If in the expansion of $(1-x)^{2n-1}$ a_r denotes the coefficient of x^r then prove that $a_{r-1}+a_{2n-r}=0$

A.-1

B. 1

 $\mathsf{C}.\ 0$

D. None of these

Answer: C

17. In the expansion of $\left(1+x+x^2+...\infty\right)^3$ the coefficient of x^n is

$$A. - 3$$

B. 3

C. 9

D. - 9

Answer: B

Watch Video Solution

18. If the magnitude of the coefficient of x^7 in the expansion of $\left(ax^2+\frac{1}{bx}\right)^8$, where a,b are positive numbers,is equal to the magnitude of the coefficient of x^{-7} in the expansion of $\left(ax+\frac{1}{bx^2}\right)^8$, then a and b are connected by the relation

A.
$$ab=1$$

$$\mathrm{B.}\,ab=2$$

C.
$$a^2b = 1$$

D.
$$ab^2=2$$

Answer: A

View Text Solution

- 19. The sum of the coefficients of the first 10 terms in the expansion of
- $\left(1-x
 ight)^{-3}$ is
 - A. 220
 - B. 286
 - C. 120
 - D. 150

Answer: A

20. The coefficient of x^{-10} in $\left(x^2-rac{1}{x^3}
ight)^{10}$, is

A. 252

 $\mathsf{B.}-210$

C. 120

D. 150

Answer: C

Watch Video Solution

21. If $C_0,\,C_1,\,C_2,\,...,\,C_n$ denote the binomial coefficients in the expansion of $\left(1+x\right)^n$, then .

 $1.\ C_1-2.\ C_2+3.\ C_3-4.\ C_4+...+(-1)^{n-1}nC_n=$

A. $n. 2^{n-1}$

B. $(n+1)2^{n-1}$

 $\mathsf{C.}\,(n+1)2^n$

D.
$$(n+2)2^{n-1}$$

Answer: A

Watch Video Solution

- **22.** Find a if the coefficient of x^2 and x^3 in the expansion of $\left(3+ax\right)^9$ are equal
 - A. 3/7
 - $\mathsf{B.}\,7/3$
 - C.7/9
 - D.9/7

Answer: D

23. If in the expansion of $(a-2b)^n$, the sum of 5^{th} and 6^{th} terms is 0, then th e values of a/b=

A.
$$\frac{n-4}{5}$$

$$\operatorname{B.}\frac{2(n-4)}{5}$$

$$\mathsf{C.}\ \frac{5}{n-4}$$

D.
$$\frac{5}{2(n-4)}$$

Answer: B

Watch Video Solution

24. Find the sum of the last 30 coefficients in the expansion of $(1+x)^{59}$, when expanded in ascending powers of x.

A.
$$2^{59}$$

B.
$$2^{58}$$

$$c. 2^{30}$$

Answer: B

Watch Video Solution

- **25.** If $\left(1-x+x^2\right)^n=a_0+a_1x+a_2x^2+{}+a_{2n}x^{2n}, \,\, ext{find the value of}$ $a_0 + a_2 + a_4 + a_{2n}$
 - A. $3^n + \frac{1}{2}$
 - $\mathsf{B.}\,3^{3n}-\frac{1}{2}$
 - $\mathsf{C.}\ \frac{3^n-1}{2}$
 - $\mathsf{D.}\,\frac{3^n+1}{2}$

Answer: D

26. If A and B are coefficients of x^n in the expansions of $(1+x)^{2n} \ {
m and} \ (1+x)^{2n-1}$ respectively, then A/B is equal to

- A. 4
- B. 2
- C. 9
- D. 6

Answer: B

View Text Solution

27. If n>1 is an integer and $x\neq 0$, then $(1+x)^n-nx-1$ is divisible by

- A. nx^3
- B. n^3x
- $\mathsf{C}.\,x$

_	
וו	nr

Answer: C

Watch Video Solution

28. Let the coefficients of powers of x in the 2^{nd} , 3^{rd} and 4^{th} terms in the expansion of $(1+x)^n$, where n is a positive integer, be in arithmetic progression. Then the sum of the coefficients of odd powers of x in the expansion is

- A. 32
- B. 64
- C. 128
- D. None of these

Answer: B

29. Let
$$(1+x)^{10} = \sum_{r=0}^{10} c_r x^r$$
 and $(1+x)^7 = \sum_{r=0}^7 d_r x^r$.

If
$$P=\sum_{r=0}^5 c_{2r} \,\, ext{and} \,\, Q=\sum_{r=0}^3 d_{2r+1}, \,\, ext{then} \, rac{P}{Q}$$
 is equal to

A. 4

B. 8

C. 16

D. 32

Answer: B

Watch Video Solution

30. The coefficient of
$$x^{10}$$
 in $1+(1+x)+\ldots+(1+x)^{20}$ is

the expansion

of

A.
$$^{19}C_9$$

B.
$$^{20}C_{10}$$

C.
$$^{21}C_{11}$$

D.
$$^{22}C_{12}$$

Answer: C

Watch Video Solution

Wb Jee Workout Category 2 Single Option Correct Type 2 Marks

1. The sum of the series
$$1+rac{1}{2}{}^nC_1+rac{1}{3}{}^nC_2+\ldots +rac{1}{n+1}{}^nC_n$$
 is equal to

A.
$$\dfrac{2^{n+1}-1}{n+1}$$

$$\mathsf{B.}\;\frac{3(2^n-1)}{2n}$$

$$\mathsf{C.} \ \hat{\ } \frac{2^n+1}{n+1}$$

D.
$$\frac{2^n+1}{2n}$$

Answer: A

2. If nC_0 , nC_1 , ..., nC_n denote the

binomial coefficients in the expansion of $\left(1+x\right)^n \; \mathrm{and} \; p+q=1$, then

$$\sum_{r=0}^{n}{}^{n}C_{r}p^{r}q^{n-r}=$$

A. 2^n

B. 2^{n-1}

C. 0

D. None of these

Answer: C

Watch Video Solution

3. The 4^{th} term from the end in the expansion of $\left(\frac{x^3}{3} - \frac{3}{x^2}\right)^7$ is

A. 315x

B.21x

C. 105x

D. None of these

Answer: C

Watch Video Solution

If

- 4.
- $rac{1}{\sqrt{2x+1}}\Big\{ig(1+\sqrt{2x+1}ig)^n-ig(1-\sqrt{2x+1}ig)^n\Big\}=a_0+a_1x+a_2x^2+.....$
- then n must be equal to (A) 20,21 (B)21,22 (C)22,23 (D)none of these
 - A. 20, 21
 - B. 21, 22

C. 22, 23

- D. None of these
- Answer: B

5. The middle term in the expansion of
$$\left(1-3x+3x^2-x^3
ight)^{2n}$$
 is

A.
$$\frac{(6n)!}{(3n)!(3n)!}x^n$$

B.
$$\frac{(6n)!}{(3n)!}x^{3n}$$

C. $\frac{(6n)!}{(3n)!(3n)!}(-x)^{3n}$

Answer: C

6. Let m,
$$\in$$
 N and $C_r={}^nC_r$, for $0\leq r\leq n$

Statement-1:

$$egin{aligned} rac{1}{m!}C_0 + rac{n}{(m+1)!}C_1 + rac{n(n-1)}{(m+2)!}C_2 + \ldots + rac{n(n-1)(n-2)\ldots 2.1}{(m+n)!}C_n \ &= rac{(m+n+1)(m+n+2)\ldots (m+2n)}{(m+n)!} \end{aligned}$$

Statement-2: For $r \leq 0$

 $^{m}C_{r}{}^{n}C_{0} + ^{m}C_{r-1}{}^{n}C_{1} + ^{m}C_{r-2}{}^{n}C_{2} + \ldots + ^{m}C_{0}{}^{n}C_{r} = {}^{m+n}C_{r}.$

A.
$$\frac{(m+n+1)(m+n+2)\dots(m+2n)}{(m+n)!}$$

B. $^{m+n}C_n$

$$\mathsf{C.}\,\frac{1}{(m+n)\,!}\big(^{m+n}C_n\big)$$

D. 0

Answer: A

Watch Video Solution

7. Write the remainder obtained when 1! + 2! + 3! + + 200! is divided by

14

A. 3

B. 4

C. 5

D. None of these

Answer: C

Watch Video Solution

- **8.** The total number of terms in the expansion of $(x+2)^{102}+(x-2)^{102}$, if similar terms are taken together are
 - A. 51
 - B. 53
 - C. 54
 - D. 52

Answer: D

9. The greatest integer less than or equal to $\left(\sqrt{2}+1\right)^6$ is

A. 198

B. 197

C. 196

D. None of these

Answer: B

Watch Video Solution

10. In the expansion of $\left(1+x\right)^{70}$, the sum of coefficients of odd powers of x is

A. 0

B. 2^{69}

 $\mathsf{C.}\,2^{70}$

 $D. 2^{72}$

Answer: B

Watch Video Solution

- **11.** Number of irrational terms in the expansion of $\left(\sqrt[5]{2}+\sqrt[10]{3}\right)^{60}$ are
 - A. 54
 - B. 61
 - C. 30
 - D. 31

Answer: A

- **12.** If the co-efficient of x^{100} in
- $1+\left(1+x
 ight)+\left(1+x
 ight)^{2}......+\left(1+x
 ight)^{n}$ is $201C_{101}$ then n equals

A. 202

B. 100

C.200

D. 201

Answer: C

Watch Video Solution

13. If
$$S_n=\sum_{r=0}^n rac{1}{nC_r}$$
 and $\sum_{r=0}^n rac{r}{nC_r}$, then $rac{t_n}{S_n}=$

A. $\frac{n}{2}$

B. $\frac{n(n+1)}{2}$

 $\mathsf{C.}\ \frac{n+1}{2}$

D. None of these

Answer: A

14. If $(1+x)^n = \sum_{r=0}^n C_r x^r$ then prove

that

$$C_1 + 2C_2 + 3C_3 + \dots + nC_n = n2^{n-1}$$

A.
$$n. 2^n$$

B.
$$(n+1).2^n$$

C.
$$n.2^{n-1}$$

D.
$$n.2^{n+1}$$

Answer: C

Watch Video Solution

15. If x+y=1, then $\sum_{r=0}^{n} rnC_{r}x^{r}y^{n-r}$ equals

A. 1

B. n

 $\mathsf{C}.\,nx$

D. ny

Answer: C

Watch Video Solution

Marks

Wb Jee Workout Category 3 One Or More Than One Option Correct Type 2

1. If
$$x^n$$
 occurs in the expansion $\left(x+1/x^2\right)^n$, then the coefficient of x^m is $\frac{(2n)!}{(m)!(2n-m)!}$ b. $\frac{(2n)!3!3!}{(2n-m)!}$ c. $\frac{(2n)!}{\left(\frac{2n-m}{3}\right)!\left(\frac{4n+m}{3}\right)!}$ d. none of

these

A.
$$\dfrac{(4n)\,!}{\left(\dfrac{4n-m}{3}
ight)!.\,\left(\dfrac{8n+m}{3}
ight)!}$$

$$\mathsf{B.}\;\frac{(4n)\,!}{n\,!(4n-m)\,!}$$

c.
$$\frac{(4n)!3!3!}{(4n-3)!}$$

D. None of these

Answer: A

Watch Video Solution

- **2.** If the coefficient of x^8 in the expansion of $\left(1+\frac{x^2}{2!}+\frac{x^4}{4!}+\frac{x^6}{6!}+\frac{x^8}{8!}\right)^2 \text{ is } \frac{1}{M}, \text{ then a divisor of } M \text{ is}$
 - A. 2
 - B. 3
 - C. 5
 - D. 7

Answer: B::C::D

Watch Video Solution

3. If the coefficients of the rth, (r+1)th, (r-2)th terms is the expansion of $(1+x)^{14}$ are in A.P, then the largest value of r is.

B. 1

C. 9

D. 5

Answer: C::D

Watch Video Solution

- **4.** Numerically the longest term in the expansion of $\left(3+2x\right)^{50}$, when $x=rac{1}{5}$ is
 - A. 6^{th}
 - $\mathsf{B.}\,8^{th}$
 - $\mathsf{C.}\,7^{th}$
 - D. None of these

Answer: A::C

5. If $C_0, C_1, C_2, \ldots, C_n$ are binomial coefficients, then

$$\sum_{k=0}^n C_k \sin kx \cos(n-k)x$$
 equals

A.
$$2^n \sin nx$$

$$\mathsf{B.}\, 2^{n+1} \sin(n+1) x$$

$$\mathsf{C.}\, 2^{n-1} \sin nx$$

D.
$$2^{n+1}\sin nx$$

Answer: C

View Text Solution

6. The range of values of the term independent of x in the

expansion of
$$\left(x\sin^{-1}lpha+rac{\cos^{-1}lpha}{x}
ight)^{10}, a\in[-1,1]$$
is

$$\mathsf{A.}\left[1,\,2\right]$$

C.
$$\left[\frac{^{10}C_5\pi^2}{2^{20}}, \frac{^{-10}C_5\pi^2}{2^5} \right]$$
D. $\left[\frac{^{-10}C_5\pi^{10}}{2^5}, \frac{^{10}C_5\pi^{10}}{2^{20}} \right]$

Answer: D

Watch Video Solution

7. the value of x , for which the 6th term in the expansions of

$$\Bigg[2^{\log} \ _\ 2\sqrt{9^{(x-1)+7}} + rac{1}{2^{rac{1}{5}}(\log)_2ig(3^{r-1}+1ig)}\Bigg] is 84$$
 , is equal to a. 4 b. 3

c. 2 d. 1

A. 0

B. 1

C. 2

D. 3

Answer: B::C

8. The value of x, for which the ninth term in the

expansion of
$$\left\{rac{\sqrt{10}}{\left(\sqrt{x}
ight)^{5\log_{10}x}}+x.\,x^{rac{1}{2\log_{10}x}}
ight\}^{10}$$

A. 10

is 450 is equal to

B. 100

 $c. 10^{-1/5}$

D. $10^{-2/5}$

Answer: B::D

Watch Video Solution

9. If $\left(1+2x+3x^2\right)^{10}=a_0+a_1x+a_2x^2+\ldots+a_{20}x^{20}$, then

A.
$$a_1 = 20$$

$$B. a_2 = 210$$

$${\sf C.}\,a_4=8085$$

D.
$$a_{20} = 2^2 \times 3^7 \times 7$$
.

Answer: A::B::C

Watch Video Solution

10. The value of $\sum_{k=0}^{7} \left| \frac{\binom{\kappa}{k}}{\binom{14}{r}} \sum_{r=k}^{14} \binom{r}{k} \binom{14}{r} \right|$, where $\binom{n}{r}$ denotes

$$^{n}C_{r}$$
, is

A.
$$6^{7}$$

B. greater than 7^6

 $C. 8^7$

D. greater than 7^8

Answer: A::B

View Text Solution

Wb Jee Previous Years Questions Category 1 Single Option Correct Type 1

Mark

- **1.** The number of solutions of the equation x+y+z=10 in positive integers $x,\,y,\,z$ is equal to
 - A. 36
 - $\mathsf{B.}\ 55$
 - $\mathsf{C.}\,72$
 - D.45

Answer: A

2. Let n be a positive even integer. The ratio of the largest coefficient and the 2^{nd} largest coefficient in the expansion of $(1+x)^n$ is 11:10. Then the number of terms in the expansion of $(1+x)^n$ is

- A. 20
- B. 21
- C. 10
- D. 11

Answer: B

- **3.** The value of sum $({}^nC_1)^2 + ({}^nC_2)^2 + ({}^nC_3)^2 + \ldots + ({}^nC_n)^2$ is
 - A. $\left(^{2n}C_n
 ight)^2$
 - , ,
 - B. $^{2n}C_n$
 - C. $^{2n}C_n+1$

Answer: D

Watch Video Solution

4. If the coefficient of x^8 in $\left(ax^2+\frac{1}{bx}\right)^{13}$ is equal to the coefficient of x^{-8} in $\left(ax-\frac{1}{bx^2}\right)^{13}$, then a and b will satisfy the relation

A.
$$ab + 1 = 0$$

$$B.ab = 1$$

$$C. a = 1 - b$$

D.
$$a + b = -1$$

Answer: A

5. The coefficient of x^3 in the infinite series expansion of $\frac{2}{(1-x)(2-x)}$,

for |x|<1, is

$$A. - 1/16$$

B. 15/8

$$C. -1/8$$

D. 15/16

Answer: B

6. The sum of the series
$$\sum_{n=1}^{\infty} \sin\left(\frac{n!\pi}{720}\right)$$
 is

A.
$$\sin\left(\frac{\pi}{180}\right) + \sin\left(\frac{\pi}{360}\right) + \sin\left(\frac{\pi}{540}\right)$$

$$\mathrm{B.} \sin\!\left(\frac{\pi}{6}\right) + \sin\!\left(\frac{\pi}{30}\right) + \sin\!\left(\frac{\pi}{120}\right) + \sin\!\left(\frac{\pi}{360}\right)$$

$$\mathsf{C.} \sin\!\left(\frac{\pi}{6}\right) + \sin\!\left(\frac{\pi}{30}\right) + \sin\!\left(\frac{\pi}{120}\right) + \sin\!\left(\frac{\pi}{360}\right) + \sin\!\left(\frac{\pi}{720}\right)$$

D.
$$\sin\!\left(\frac{\pi}{180}\right) + \sin\!\left(\frac{\pi}{360}\right)$$

Answer: C

Watch Video Solution

- 7. Number of irrational terms in the binomial expansion $\left(3^{1/5}+7^{1/3}
 ight)^{100}$ is
 - A. 90
 - C. 94

B. 88

D. 95

Answer: C

8. In the expansion of (x-1)(x-2)...(x-18), the coefficient of x^{17} is

A. 684

B. - 171

C. 171

D. - 342

Answer: B

Watch Video Solution

9. If $1+^n C_1\cos \theta +^n C_2\cos 2\theta + \ldots +^n C_n$ equals

A.
$$\left(2 \frac{\cos(heta)}{2}\right)^n \frac{\cos(n heta)}{2}$$

$$\mathsf{B.}\,2\frac{\cos^2(n\theta)}{2}$$

$$\mathsf{C.}\,2\frac{\cos^{2n}(\theta)}{2}$$

$$\mathsf{D.}\,2\frac{\cos^2(\theta)}{2}$$

Answer: A

Watch Video Solution

10. Let $\left(1+x+x^2\right)^9=a_0+a_1x+a_2x^2+..... + a_{18}x^{18}.$ Then

A.
$$a_0 + a_2 + \ldots + a_{18} = a_1 + a_3 + \ldots + a_{17}$$
. Then

B.
$$a_0 + a_2 j + \ldots + a_{18}$$
 is even

C.
$$a_0 + a_2 + \ldots + a_{18}$$
 is divisible by 9

D.
$$a_0 + a_2 + \ldots + a_{18}$$
 is divisible by 3 but not by 9

Answer: B

Watch Video Solution

11. The number 101^{100} -1 is divisible by

A. 10^4

B. 10^6

 $c. 10^8$

D. 10^{12}

Answer: A

Watch Video Solution

12. If n is an even positive integer, then find the value of x if the greatest term in the expansion of 1+x ^n may have the greatest coefficient also.

A.
$$\dfrac{n}{n+2} < x < \dfrac{n+2}{n}$$

$$\operatorname{B.} \frac{n}{n+1} < x < \frac{n+1}{n}$$

$$\mathsf{C.} \; \frac{n+1}{n+2} < x < \frac{n+2}{n+1}$$

$$\operatorname{D.} \frac{n+2}{n+3} < x < \frac{n+3}{n+2}$$

Answer: A

13. The number of irrational terms in the expansion of $\left(3^{1/8}+5^{1/4}\right)^{84}$ is

 $\mathsf{A.}\ 73$

B.74

 $\mathsf{C.}\,75$

D. 76

Answer: B

