

MATHS

BOOKS - MTG WBJEE MATHS (HINGLISH)

CIRCLES

Wb Jee Workout Category 1 Single Option Correct Type

1. The common chord of $x^2+y^2-4x-4y=0$ and $x^2+y^2=4^2$ subtends and angle lpha at the origin, then lpha equals

A. 30°

B. 45°

 $\mathsf{C.}\,60^\circ$

D. 90°

Answer: D

2. The condition so that the line $(x+g)\cos\theta+(y+f)\sin\theta=k$ is a tangent to $x^2+y^2+2gx+2fy+c=0$ is

A.
$$g^2+f^2=c+k^2$$

$$\mathtt{B.}\,g^2+f^2=c^2+k^2$$

C.
$$g^2 + f^2 = c^2 - k^2$$

D.
$$g^2+f^2=c-k^2$$

Answer: A

Watch Video Solution

3. The circumcentre of the triangle, whose vertices are (0,0),(4a,0),(0,6a) is

A. (2a,0)

B. (0,3a)

C. (3a,0)

D. (2a,3a)

Answer: D

Watch Video Solution

4. Find the perimeter of the circle $x^2+y^2=a^2$

A.
$$x^2+y^2=ax-by$$

$$\operatorname{B.} x^2 + y^2 = ax + by$$

$$\mathsf{C.}\,x^2-y^2=ax-by$$

D. none

Answer: B

The

$$-2y +$$

 $x^{2} + y^{2} - 2x - 2y + 1 = 0$, $x^{2} + y^{2} - 4x + 6y - 2 = 0$ and $x^{2} + y^{2} + 3x$

radical

6. If $\left(m_i, \frac{1}{m_i}\right)$, i=1,2,3,4 are four distinct points on a circle, show

centre

of

is

A.
$$\left(\frac{3}{5}, \frac{9}{40}\right)$$
B. $\left(-\frac{3}{5}, -\frac{9}{40}\right)$
C. $\left(-\frac{3}{5}, \frac{9}{40}\right)$

D.
$$\left(\frac{3}{5},\;-\frac{9}{4}\right)$$

Answer: C

Watch Video Solution

A. 0

B. - 1

that $m_1m_2m_3m_4=1$

$$D. -a^2$$

Answer: A

Watch Video Solution

7. Locus of the centre of the circle which touches the x-axis and also the circle $(x-2)^2 + (y-2)^2 = 4$ externally is

A.
$$(x-2)^2 + (y-2)^2 = 16$$

B.
$$(x-2)^2 - 8y = 0$$

C.
$$(x-2)^2 + \left(y - \frac{5}{2}\right)^2 = 10$$

D.
$$x^2 - 4x + 4 = 0$$

Answer: B

8. Tangents are drawn from (4, 4) to the circle $x^2+y^2-2x-2y-7=0$ to meet the circle at A and B. The length of the chord AB is

A. $4\sqrt{3}$ units

B. $2\sqrt{3}$ units

C. $2\sqrt{6}$ units

D. $3\sqrt{2}$ units

Answer: D

Watch Video Solution

9. Length of intercept made by the circle $x^2+y^2-16x+4y-36=0$ on x-axis is

A. 20

B. 10

C. 5

D. none

Answer: A

Watch Video Solution

- **10.** The radius of the circle $3x^2+3y^2+9x+8y-4=0$ is
 - A. $\frac{\sqrt{193}}{3}$ units
 - B. $\frac{\sqrt{193}}{6}$ units
 - C. $\frac{\sqrt{129}}{3}$ units
 - D. none

Answer: B

11. The length of the transversal common tangent to the circle

$$x^2+y^2=1$$
 and $\left(x-t
ight)^2+y^2=1$ is $\sqrt{21}$, then t=

A.
$$\pm 2$$

B.
$$\pm 4$$

$$\mathsf{C}.\pm3$$

D.
$$\pm 5$$

Answer: D

12. Locus of centre of a circle of radius 2, which rolls on the outside of circle $x^2+y^2+3x-6y-9=0$ is

A.
$$x^2 + y^2 + 3x - 6y + 5 = 0$$

B.
$$x^2 + y^2 + 3x - 6y - 31 = 0$$

C.
$$x^2 + y^2 + 3x - 6y + 29/4 = 0$$

D. none

Answer: D

Watch Video Solution

13. One of the diameters of the circle $x^2+y^2-12x+4y+6=0$ is given by

A.
$$x + y = 0$$

B.
$$x + 3y = 0$$

$$\mathsf{C}.\,x=y$$

$$\mathsf{D.}\,3x+2y=0$$

Answer: B

14. Area of the circle in which a chord of length $\sqrt{2}$ makes an angle $\frac{\pi}{2}$ at the centre,

A.
$$\pi/2$$
 units

B.
$$2\pi$$
 units

C.
$$\pi$$
 units

D.
$$\pi/4$$
 units

Answer: C

15. If a circle passes through the point (a,b) and cuts the circle $x^2+y^2=4$ orthogonally, then the locus of its centre is

A.
$$2x + 4y - 9 = 0$$

B.
$$2x + 4y + 9 = 0$$

C.
$$2x - 4y + 9 = 0$$

D. none

Answer: A

Watch Video Solution

- **16.** The circles $x^2 + y^2 + 6x + 6y = 0$ and $x^2 + y^2 12x 12y = 0$
 - A. $\pi/6$
 - B. $\pi/4$
 - C. $\pi/3$
 - D. $\pi/2$

Answer: D

Watch Video Solution

17. The circles $x^2+y^2+6x+6y=0$ and $x^2+y^2-12x-12y=0$

A. cut orthogonally

B. touch each other internally

C. intersect at two points

D. touch each other externally

Answer: D

Watch Video Solution

18. The locus of the centre of the circles which touches both the axes is given by

A.
$$x^2-y^2=0$$

$$\mathsf{B.}\,x^2+y^2=0$$

$$\mathsf{C.}\,x^2-y^2=1$$

$$\operatorname{D.} x^2 + y^2 = 1$$

Answer: A

19. The circles $x^2 + y^2 - 10x + 16 = 0$ and $x^2 + y^2 = a^2$ intersect at two distinct point if

A.
$$a < 2$$

B.
$$2 < a < 8$$

$$\mathsf{D}.\,a=2$$

Answer: B

Watch Video Solution

20. The straight line x+y-1=0 meets the circle . $x^2+y^2-6x-8y=0$ at A and B. Then, the equation of : the circle of which AB is a diameter, is

A.
$$x^2 + y^2 - 2y - 6 = 0$$

$$\mathrm{B.}\,x^2 + y^2 + 2y - 6 = 0$$

C.
$$2(x^2+y^2)+2y-6=0$$

D.
$$3(x^2+y^2)+2y-6=0$$

Answer: A

Watch Video Solution

21. If the straight line y=mx lies outside the circle $x^2+y^2-20y+90=0$ then the value of m will satisfy (A) m<3 (B)

$$|m| < 3$$
 (C) $m > 3$ (D) $|m| > 3$

$$\mathsf{A.}\,m<3$$

B.
$$|m| < 3$$

$$\mathsf{C}.\,m>3$$

D.
$$|m|>3$$

Watch Video Solution

22. The intercept on the line y=x by the circle $x^2+y^2-2x=0$ is AB.

Equation of the circle with AB as a diameter is (A

$$\left(x-\frac{1}{2}\right)^3 + \left(y-\frac{1}{2}\right)^2 = \frac{1}{2} \ \ (\text{B}) \ \ \left(x-\frac{1}{2}\right)^2 + \left(y-\frac{1}{2}\right)^2 = \frac{1}{4} \ \ (\text{C})$$

$$\left(x+\frac{1}{2}\right)^2 + \left(y+\frac{1}{2}\right)^2 = \frac{1}{2} \ \ (\text{D}) \left(x+\frac{1}{2}\right)^2 + \left(y+\frac{1}{2}\right)^2 = \frac{1}{4}$$

A.
$$x^2 + y^2 = 1$$

B.
$$x(x-1) + y(y-1) = 0$$

$$C. x^2 + y^2 = 2$$

D.
$$(x-1)(x-2) + (y-1)(y-2) = 0$$

Answer: B

23. If four distinct points (2k,3k),(2,0),(0,3),(0,0) lie on a circle, thenO1

A.
$$k < 0$$

B. 0 < k < 1

 $\mathsf{C}.\,k=1$

D. k > 1

Answer: C

24.

 $x^2+y^2-2x+4y-20=0, x^2+y^2+6x+10y-2=0$ is

length of the common

chord

of

the

circles

A. 8 units

The

- B. 10 units
- C. $\frac{48}{5}$ units

D. $\frac{24}{5}$ units

Answer: C

Watch Video Solution

- **25.** If (2, 4) is a point interior to the circle $x^2+y^2-6x-10y+\lambda=0$ and the circle does not cut the axes at any point, then
 - A.(25,34)
 - B. (9,32)
 - C. (25,32)
 - D. (4,25)

Answer: C

26. The radical centre of circles represented by

$$S_1 \equiv x^2 + y^2 - 7x - 6y - 4 = 0, S_2 \equiv x^2 + y^2 + 10x + 6y - 4 = 0$$

- A. (-1, 1)
- B. (1,-1)
- C. (0,0)
- D. none

Answer: C

27. Sum of the square of the length of the chord intersected by the line

 $x+y=n, n\in N$ on circle $x^2+y^2=4$ is: (A) 11 (B) 22 (C) 33 (D) none of

A. 210 units

these

B. 180 units

- **C. 150 units**
- **D. 120 units**

Answer: A

Watch Video Solution

28. If the coordinates of one end of a diameter of the circles

 $x^2+y^2+4x-8y+5=0$ is (2,1),, the coordinates of the other end is

- A. (-6,-7)
- B.(6,7)
- C.(-6,7)
- D. (7,-6)

Answer: C

29. The area of the circle $x^2-2x+y^2-10y+k=0$ is 25π sq. units.

The value of k is equal to

- A. 1
- B. 1
- C. 0
- D. 2

Answer: B

Watch Video Solution

30. The number of integral values of r for which the circle $(x-1)^2+(y-3)^2=r^2$ and $x^2+y^2-8x+2y+8=0$ intersect at two distinct points is ____

- **A.** 3
- B. 2

C. 5

D. 1

Answer: B

Watch Video Solution

Wb Jee Workout Category 2 Single Option Correct Type

1. From a point $P(x_1,y_1)$ on the straight line 4x-3y+14=0 two tangents PA and PB are drawn to the circles

 $x^2 + y^2 = 16 \, ext{ and } \, x^2 + y^2 + 8x - 6y + 12 = 0$, then

A. PA=PB

B. PA=3PB

C. 3PA=PB

D. none

Answer: A

View Text Solution

- **2.** If the circles $x^2+y^2-16x-20y+164=r^2$ and $(x-4)^2+(y-7)^2=36$ intersect at two points then (a) 1 < r < 11
- (b) r=11 (c) r>11 (d) 0 < r < 1

A.
$$1 < r < 11$$

B.
$$r < 1$$

$$\mathsf{C.}\,r=11$$

$$\mathrm{D.}\,r>1$$

Answer: A

3. The angle between the pair of tangents drawn from the point (2,4) to the circle $x^2+y^2=4$ is

A.
$$\tan^{-1}(3/8)$$

B.
$$\tan^{-1}(4/3)$$

C.
$$90^\circ$$

D. none

Answer: B

4. The locus of the point whose polars w.r.t. the circle $x^2+y^2-4x-4y-8=0$ and $x^2+y^2-2x+6y-2=0$ are mutually perpendicular is

A.
$$x^2 + y^2 - 3x + y = 4$$

$$\mathsf{B.}\, x^2 + y^2 + 3x - y = 4$$

C.
$$x^2 + y^2 + 3x + y = 4$$

D.
$$x^2 + y^2 - 3x - y = 4$$
.

Answer: A

Watch Video Solution

5. The number of direct common tangents that can be drawn to the circles $x^2 + y^2 + 4x - 6y - 12 = 0$ and $x^2 + y^2 - 8x + 10y + 16 = 0$

is/are

- A. 3
- B. 1
- C. 2
- D. 4

Answer: C

6. The point of contact of the circles

$$x^2 + y^2 - 4x + 6y - 3 = 0$$
 and $x^2 + y^2 + 16x + 6y + 37 = 0$ is

A.
$$(-8, -3)$$

D. none

Answer: C

Watch Video Solution

7. Vertices of a variable triangle are $(5,12), (13\cos\theta, 13\sin\theta)$ and $(13\sin\theta - 13\cos\theta)$, Where $\theta \in R$. Locus of it's orthocentre is:

A.
$$(x+y-17)^2+(x-y+7)^2=(26)^2$$

B.
$$(x + y + 17)^2 + (x - y - 7)^2 = (26)^2$$

C.
$$(x+y+17)^2+(x+y+7)^2=(26)^2$$

D.
$$(x-y-17)^2 + (x+y-7)^2 = (26)^2$$

Answer: A

Watch Video Solution

the circle $x^2 + y^2 + 2x + 3y + 1 = 0$ 8. lf cuts $x^2+y^2+4x+3y+2=0$ at AandB , then find the equation of the circle on AB as diameter.

A.
$$x^2 + y^2 + x + 3y + 3 = 0$$

$$\mathsf{B.}\,2x^2+2y^2+2x+6y+1=0$$

C.
$$x^2 + y^2 + x + 6y + 1 = 0$$

D. none

Answer: B

9. Let C_1 and C_2 denote the centres of the circles $x^2+y^2=4$ and $(x-2)^2+y^2=1$ respectively and let P and Q be their points of intersection. Then the areas of triangles C_1PQ and C_2PQ are in the ratio _

B. 5:1

C. 7:1

D.9:1

Answer: C

- **10.** If (-2,1) is a limiting point of a coaxial system of circle of which $x^2+y^2-4x-6y+7=0$ is a member, then the other limiting point is
 - $A.\left(\frac{4}{5}, \frac{-12}{5}\right)$

D.
$$\left(\frac{4}{5}, \frac{12}{5}\right)$$

Answer: D

View Text Solution

 $B.\left(\frac{-4}{5},\frac{12}{5}\right)$

 $\mathsf{C.}\left(\frac{-4}{5},\frac{-12}{5}\right)$

11. Equation of the tangent to the circle at the point (1, -1) whose centre is the point of intersection of the straight lines x-y=1 and 2x+y-3=0, is

A.
$$x + 4y + 3 = 0$$

$$B. 3x - y - 4 = 0$$

$$\mathsf{C.}\,x - 3y - 4 = 0$$

D.
$$4x + y - 3 = 0$$

Answer: A

12. A circle passes through the points (2,3) and (4,5) . If its centre lies on the line, y-4x+3=0, then its radius is equal to :

- A. 1 units
- B. 2 units
- C. $\sqrt{5}$ units
- D. $\sqrt{2}$ units

Answer: B

Watch Video Solution

13. If two distinct chords, drawn from the point (p, q) on the circle $x^2+y^2=px+qy$ (where $pq\neq q$) are bisected by the x-axis, then $p^2=q^2$ (b) $p^2=8q^2$ $p^2<8q^2$ (d) $p^2>8q^2$

A.
$$p^2=q^2$$

B.
$$p^2 = 8q^2$$

C.
$$p^2 < 8q^2$$

D.
$$p^2>8q^2$$

Answer: D

Watch Video Solution

14. If two circles
$$x^2+y^2+c^2=2ax$$
 and $x^2+y^2+c^2-2by=0$ touch each other externally , then prove that $\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{c^2}$

A.
$$\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$$

$$B. \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a^2}$$

C.
$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = 0$$
D. $\frac{1}{a^2} = \frac{1}{b^2} - \frac{1}{c^2}$

Answer: A

15. If the length of the tangent from (f,g) to the circle $x^2+y^2=6$ is twice the length of the tangent from the same point to the circle $x^2+y^2+3x+3y=0$, then

A.
$$f^2 + g^2 + 4f + 4g - 2 = 0$$

B.
$$f^2 + g^2 + 4f + 4g + 2 = 0$$

C.
$$f^2 - g^2 + 4f = 0$$

D.
$$f^2 + g^2 + 4f = 0$$

Answer: B

Watch Video Solution

Wb Jee Workout Category 3 One Or More One Option Correct Type

1. The equation of the circle whose centre lies on x+2y=0 and touching 3x-4y+8=0 and 3x-4y-28=0 is

A.
$$(x-2)^2 + (y+1)^2 = 324$$

B.
$$5(x-2)^2 + 5(y-2)^2 = 324$$

$$\mathsf{C.}\,25(x-2)^2+25(y+1)^2=324$$

D. none

Answer: C

Watch Video Solution

2. The co-ordinates of the limiting points of the co-axial system of circles

 $x^2+y^2+3x+2y-4=0$ and $x^2+y^2-x-2y+4=0$ are

$$\int 3-\sqrt{23}$$
 $5-\sqrt{23}$

A.
$$\left(\frac{3-\sqrt{23}}{4}, \frac{5-\sqrt{23}}{4}\right)$$

B.
$$\left(\frac{3+\sqrt{23}}{4}, \frac{5+\sqrt{23}}{4}\right)$$

$$\mathsf{C.}\left(\frac{3+\sqrt{23}}{2},\frac{5+\sqrt{23}}{2}\right)$$

D. none

Answer: A::B

3. The straight line 4x+3y=p is tangent to the circle $x^2+y^2+4\sqrt{3}-4x-6y=0$, then p equals

A.
$$10 + 12\sqrt{3}$$

$$\mathsf{B.}\,10-22\sqrt{3}$$

C.
$$10 + 10\sqrt{3}$$

D.
$$22-10\sqrt{3}$$

Answer: C::D

View Text Solution

4. Four distinct points (2k,3k), (1,0), (0,1) and (0,0) lies on a circle for-

A. all integral value of k

 $\mathrm{B.}\,0 < k < 1$

$$C. k = 0$$

D.
$$k=rac{5}{13}$$

Answer: C::D

Watch Video Solution

The equation of the image of 5. the circle $x^2+y^2+16x-24y+183=0$ by the line mirror 4x+7y+13=0 is :

A.
$$x^2 + y^2 + 32x - 4y + 234 = 0$$

$$B. x^2 + y^2 + 32x + 4y - 235 = 0$$

$$\mathsf{C.}\,x^2 + y^2 + 32x - 4y - 235 = 0$$

D.
$$x^2 + y^2 + 32x + 4y + 235 = 0$$

Answer: D

6. The equation of a circle C_1 is $x^2+y^2=4$. The locus of the intersection of orthogonal tangents to the circle is the curve C_2 and the locus of the intersection of perpendicular tangents to the curve C_2 is the curve C_3 , Then

A. c_2 and c_3 are circles having same centre

B. the area enclosed by the curve c_3 is 64π sq. units

C. c_3 is a circle

D. none

Answer: A::B::C

Watch Video Solution

7. circle C_1 of unit radius lies in the first quadrant and touches both the co-ordinate axes. The radius of the circle which touches both the co-ordinate axes and cuts C_1 so that common chord is longest (A) 1 (B) 2 (C) 3 (D) 4

B. 3

c.
$$\frac{1}{2}$$

D.
$$\frac{1}{3}$$

Answer: B::D

Watch Video Solution

the circle(s)

8. All those circles which pass through (2, 0) and (-2,0) are orthogonal to

A.
$$x^2 + y^2 - 5x + 4 = 0$$

$$B. x^2 + y^2 + 13x + 4 = 0$$

$$\mathsf{C.}\, x^2 - y^2 - 12x + 4 = 0$$

D.
$$x^2 + y^2 - 10x + 4 = 0$$

Answer: A::B::C::D

9. Tangents drawn from the origin to the circle
$$x^2+y^2-2ax-2by+a^2=0$$
 are perpendicular if

$$\mathsf{B.}\, p^2q^2$$

$$\mathsf{C}.\,q=\,-\,p$$

D.
$$p^2 + q^2 = 1$$

Answer: A::B::C

Watch Video Solution

10. The equation of circle passing through (-1,-2) and touching both the axes is

A.
$$x^2 + y^2 - 2x - 2y - 1 = 0$$

B.
$$x^2 + y^2 + 2x + 2y + 1 = 0$$

C. $x^2 + y^2 + 10x + 10y + 25 = 0$

D. $x^2 + y^2 - 2x - 2y + 1 = 0$

Answer: B::C

Watch Video Solution

Wb Jee Previous Years Questions Category 1 Single Option Correct Type

1. A point P lies on the circle $x^2+y^2=169$. If Q=(5,12) and

$$R=(\,-\,12,5), ext{ then the } \angle QPR$$
 is

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{4}$$

C.
$$\frac{\pi}{3}$$

D.
$$\frac{\pi}{2}$$

Answer: B

Watch Video Solution

2. A point moves so that the sum of squares of its distances from the points (1,2) and (-2,1) is always 6. then its locus is

A. the straight line
$$y-rac{3}{2}=\ -3igg(x+rac{1}{2}igg)$$

B. the circle with centre
$$\left(-\frac{1}{2},\frac{3}{2}\right)$$
 and radius $\frac{1}{\sqrt{2}}$

C. a parabola with focus (1,2) and directrix passing through (-2,1)

D. an ellipspe with foci (1,2) and (-2,1)

Answer: B

Watch Video Solution

3. A circle passing through (0,0),(2,6),(6,2) cuts the x-axis at the point

P
eq (0,0). Then the length of OP, where O is the origin, is

C.(2,-4)

D. (-4,2)

Answer: C

B.(2,4)

(1,2), then the other end is

4. If one end of a diameter of the circle $3x^2+3y^2-9x+6y+5=0$ is

Watch Video Solution

Answer: C

D. 10

C. 5

5. The equation of circle passing through the point (1,1) and point of intersection $x^2+y^2=6$ and $x^2+y^2-6x+8=0$, is

A.
$$x^2 + y^2 + 3x - 5 = 0$$

$$B. x^2 + y^2 - 4x + 2 = 0$$

C.
$$x^2 + y^2 + 6x - 4 = 0$$

D.
$$x^2 + y^2 - 4y - 2 = 0$$

Answer: A

Watch Video Solution

6. the equation of the line parallel to the line 3x+4y=0 and touching the circle $x^2+y^2=9$ in the first quadrant is:

A.
$$3x + 4y = 15$$

B. 3x + 4y = 45

 $\mathsf{C.}\,3x+4y=9$

D. 3x + 4y = 27

Answer: A

Watch Video Solution

- **7.** The common chord of the circles $x^2+y^2-4x-4y=0$ and
- $2x^2+2y^2=32$ subtends at the origin an angle equal to
 - A. $\frac{\pi}{2}$
 - B. $\frac{\pi}{4}$
 - C. $\frac{\pi}{6}$
 - D. $\frac{\pi}{3}$

Answer: A

8. The locue of the mis-points of the chords of the circel $x^2+y^2+2x-2y-2=0$ which make an angle of 90° at the centre is

A.
$$x^2 + y^2 - 2x - 2y = 0$$

$$\mathsf{B.}\, x^2 + y^2 - 2x + 2y = 0$$

C.
$$x^2 + y^2 + 2x - 2y = 0$$

D.
$$x^2 + y^2 + 2x - 2y - 1 = 0$$

Answer: C

9. Without changing the direction of the axes, the origin is transferred to the point (2,3). Then the equation $x^2+y^2-4x-6y+9=0$ changes to

A.
$$x^2 + y^2 + 4 = 0$$

$$\mathsf{B.}\,x^2+y^2=4$$

$$\mathsf{C.}\,x^2 + y^2 - 8x - 12y + 48 = 0$$

D.
$$x^2 + y^2 = 9$$

Answer: B

Watch Video Solution

10. The angle between the pair of tangents drawn from a point P to the circle $x^2+y^2+4x-6y+9\sin^2\alpha+13\cos^2\alpha=0$ is 2α . then the equation of the locus of the point P is $x^2+y^2+4x-6y+4=0$

$$x^2 + y^2 + 4x - 6y - 9 = 0$$

$$x^2 + y^2 + 4x - 6y - 4 = 0$$

$$x^2 + y^2 + 4x - 6y + 9 = 0$$

A.
$$x^2 + y^2 + 4x + 6y + 9 = 0$$

$$B. x^2 + y^2 - 4x + 6y + 9 = 0$$

$$\mathsf{C.}\,x^2 + y^2 - 4x - 6y + 9 = 0$$

D.
$$x^2 + y^2 + 4x - 6y + 9 = 0$$

Answer: D

Watch Video Solution

11. If one of the diameter of the circle, given by the equation $x^2+y^2+4x+6y-12=0$, is a chord of a circle S, whose centre is (2,-3), the radius of S is

- A. $\sqrt{41}$ units
- B. $3\sqrt{5}$ units
- C. $5\sqrt{2}$ units
- D. $2\sqrt{5}$ units

Answer: A

12. From the point A(0,3) on the circle $x^2+4x+(y-3)^2=0$ a chord AB is drawn to a point such that AM = 2AB. The equation of the locus of M is :-

A.
$$x^2 + y^2 - 8x - 6y + 9 = 0$$

$$\mathrm{B.}\,x^2 + y^2 + 8x + 6y + 9 = 0$$

$$\mathsf{C.}\,x^2 + y^2 + 8x - 6y + 9 = 0$$

D.
$$x^2 + y^2 - 8x + 6y + 9 = 0$$

Answer: C

13. A variable circle passes through the fixed A(p,q) and touches the x-axis. Show that the locus of the other end of the diameter through A is $(x-p)^2 = 4qy$.

$$\mathsf{A.}\left(x-p\right)^{2}=4qy$$

$$B. (x-q)^2 = 4py$$

$$\mathsf{C.}\left(y-p\right)^{2}=4qx$$

D.
$$(y-q)^2=4qx$$

Answer: A

Watch Video Solution

Wb Jee Previous Years Questions Category 2 Single Option Correct Type

1. if
$$P=(0,0),$$
 $Q=(1,0)$ and $R=\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$, then the centre of the circle for which the lines $PO,$ QR and RP are tangents is

A.
$$\left(\frac{1}{2}, \frac{1}{4}\right)$$

$$\mathsf{B.}\left(\frac{1}{2},\,\frac{\sqrt{3}}{4}\right)$$

$$\mathsf{C.}\left(\frac{1}{2}, \frac{\sqrt{1}}{2\sqrt{3}}\right)$$

D.
$$\left(\frac{1}{2}, \frac{-1}{\sqrt{3}}\right)$$

Answer: C

Watch Video Solution

2. The locus of the midpoint of chord of the circle $x^2+y^2=1$ which subtends a right angle at the origin is

A.
$$x^2 + y^2 = rac{1}{4}$$

$$\mathtt{B.}\,x^2+y^2=\frac{1}{2}$$

$$\mathsf{C}.\,xy=0$$

$$\mathsf{D}.\,x^2-y^2=0$$

Answer: B

Watch Video Solution

3. If one of the diameters of the curve $^2+y^2-4x-6y+9=0$ is a chord of a circle with centre (1,1) then the radius of this circle is

- A. 3
- B. 2
- $\mathrm{C.}\,\sqrt{2}$
- D. 1

Answer: A

- **4.** Let A be the centre of the circle $x^2+y^2-2x-4y-20=0$. If the tangents at the points B (1, 7) and D(4,-2) on the circle meet at the point C, then the perimeter of the quadrilateral ABCD is
 - A. 150 sq. units
 - B. 50 sq. units
 - C. 75 sq. units
 - D. 70 sq. units

Answer: C

Watch Video Solution

Wb Jee Previous Years Questions Category 3 One Or More One Option Correct Type

- 1. The equation of the circles which touch both the axes and the line
- 4x+3y=12 and have centres in the first quadrant, are

A.
$$x^2 + y^2 - x - y + 1 = 0$$

$$B. x^2 + y^2 - 2x - 2y + 1 = 0$$

$$\mathsf{C.}\,x^2 + y^2 - 12x - 12y + 36 = 0$$

D.
$$x^2 + y^2 - 6x - 6y + 36 = 0$$

Answer: B::C

the circles $x^2 + y^2 = 6$, $x^2 + y^2 - 6x - 4y + 10 = 0$ and $x^2 + y^2 + 2x + 2y - 2 = 0$

2. If the circle $x^2+y^2+2gx+2fy+c=0$ bisects the circumference of

B.
$$fg=rac{147}{25}$$
C. $g+2f=c+2$

A. c = -5

D.
$$4f=3g$$

Answer: A::B::D

