

MATHS

BOOKS - MTG WBJEE MATHS (HINGLISH)

CONIC SECTIONS

Wb Jee Workout Category 1 Single Option Correct Type

1. The equation of hyperbola referred to its axes as axes of coordinate whose distance between the foci is 20 and eccentricity equals $\sqrt{2}$ is

A.
$$x^2 - y^2 = 25$$

B. $x^2 - y^2 = 50$

$$\mathsf{C.}\,x^2-y^2=125$$

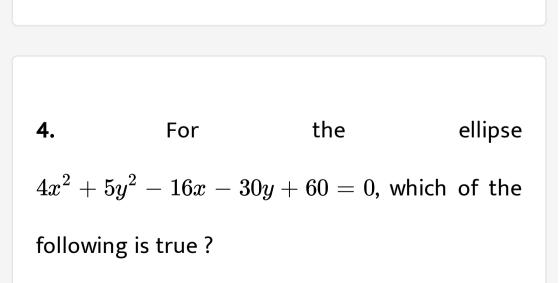
D.
$$x^2 + y^2 = 25$$

Answer: B

2. The equation of the ellipse with its centre at (1, 2), one focus at (6, 2) and passing through the point (4, 6) is-

A.
$$\frac{(x-1)^2}{45} + \frac{(y-2)^2}{20} = 1$$

B. $\frac{(x+1)^2}{45} + \frac{(y+2)^2}{20} = 1$
C. $\frac{(x-1)^2}{20} + \frac{(y-2)^2}{45} = 1$
D. $\frac{(x+1)^2}{20} + \frac{(y+2)^2}{45} = 1$


Answer: A

Watch Video Solution

3. If the eccentric angles of the ends of a focal chord of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b)$ are θ_1 and θ_2 , then value of $\tan \frac{\theta_1}{2} \tan \frac{\theta_2}{2}$ equals

A.
$$\frac{e-1}{e+1}$$

B.
$$\frac{e-1}{e^2+1}$$

C.
$$\frac{e+1}{e-1}$$

D.
$$\frac{e^2+1}{e-1}$$

Answer: A

Watch Video Solution

A. Centre=(2,3)

B. Length of major axes is1

C. Eccentricity=
$$\frac{1}{\sqrt{5}}$$

D. All of these

Answer: D

5. The equation of common tangent to the parabola's $y^2 = 32x$ and $x^2 = 108y$ is

A. 2x + 3y + 12 = 0

B.
$$2x + 3y + 36 = 0$$

C. 2x + 3y - 36 = 0

D. 2x + 3y - 12 = 0

Answer: B

6. If the line x + y - 1 = 0 touches the parabola

 $y^2=kx,\,\,{
m thn}$ the value of k, is

A. 4

 $\mathsf{B.}-4$

C. 2

 $\mathsf{D.}-2$

Answer: B

7. Equation of tangent at the vertex of parabola

$$x^2 + 8x + 4y = 0$$
 is

A. x = 4

B.
$$x = -4$$

$$C. y = 4$$

D. y = -4

Answer: C

8. The equation of parabola whose latus rectum

is 2 units, axis of line is x+y-2=0 and tangent at the vertex is x-y+4=0 is given by

A.
$$(x+y-2)^2 = 4\sqrt{2}(x-y+4)^2$$

B. $(x-y-4)^2 = 4\sqrt{2}(x+y-2)$
C. $(x+y-2)^2 = 2\sqrt{2}(x-y+4)$

D. none

Answer: C

9. The co-ordinates of the point on the parabola $y = \left(x^2 + 10x + 3
ight)$ which is nearest to the straight line y = 4x - 7 are

A. (3, 18)B. (18, 3)C. (-3, -18)D. (-18, -3)

Answer: C

10. The equation of the chord joining two points (x_1, y_1) and (x_2, y_2) on the rectangular hyperbola $xy=c^2$, is

Watch Video Solution

A.
$$rac{x}{x_1-x_2}+rac{y}{y_1-y_2}$$

B. $rac{x}{y_1-y_2}+rac{y}{x_1-x_2}=1$
C. $rac{x}{x_1+x_2}+rac{y}{y_1+y_2}=1$
D. $rac{x}{y_1+y_2}+rac{y}{x_1+x_2}=1$

Answer: C

11. The equation of the circle drawn with the focus of the parabola $(x-1)^2 - 8y = 0$ as its centre and touching the parabola at its vertex is

A.
$$(x-1)^2 + (y-2)^2 = 5$$

B.
$$(x-2)^2 + (y-1)^2 = 5$$

$$\mathsf{C.} \left(x - 1 \right)^2 + \left(y - 2 \right)^2 = 4$$

D. none

Answer: C

12. Find the length of the latus rectum of the

parabola

$$169 \Big\{ (x-1)^2 + (y-3)^2 \Big\} = (5x-12y+17)^2$$

A.
$$\frac{14}{13}$$

B. $\frac{28}{13}$
C. $\frac{12}{13}$

•

D. none

Answer: B

13. The number of tangents (real) that can be drawn to the ellipse $5x^2 + 7y^2 = 40$ passing through (3,5) is

A. 4

B. 3

C. 1

D. 2

Answer: D

14. The number of values of c such that the straight line y = 4x + c touches the curve $rac{x^2}{4} + y^2 = 1$ is k then,k is

A. 0

B.4

C. 7

D. none

Answer: D

15. If the curve $xy = R^2 - 16$ represents a rectangular hyperbola whose branches lies only in the quadrant in which abscissa & ordinate are possite in sign but not equal in magnitude, then

A.
$$|R| < 4$$

- $\mathsf{B.}\left|R\right|\geq 4$
- $\mathsf{C}.\left|R\right|=4$
- D. none

16. For the second degree equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ which of the following is not true ?

A. represent a pair of straight line if $\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$

B. represent a pair of perpendicular lines if

$$\Delta=0$$
 and $a+b=0$

C. represent a rectangular hyperbola if

$$\Delta
eq 0, a+b=0 \, ext{ and } \, h^2>ab$$

D. none

Answer: D

Watch Video Solution

17. Find a point on the curve $x^2 + 2y^2 = 6$, whose distance from the line x + y = 7, is minimum.

A. (1,2)

B. (-2,-1)

C. (1,-2)

D. (2,1)

Answer: D

18. If e_1 is the eccentricity of the conic $9x^2 + 4y^2 = 36 \text{ and } e_2$ is the eccentricity of the conic $9x^2 - 4y^2 = 36$ then e12 - e22 = 2 b. e22 - e12 = 2 c. 2 < 322 - 312 < 3 d. e22 - e12 > 3

A.
$$e_1^2 + e_2^2 = 2$$

B.
$$3 < e_1^2 + e_2^2 < 4$$

C.
$$e_1^2 + e_2^2 > 4$$

D. none

Answer: B

Watch Video Solution

19. If e is the eccentricity of
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \& \theta$$

be the angle between the asymptotes, then $\sec \theta/2$ equals

B.1/e

 $\mathsf{C.}\,2e$

D. e

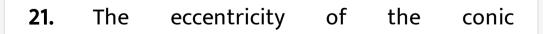
Answer: D

Watch Video Solution

20. Set of values of 'h' for which the number of

distinct common normals of $(x-2)^2 = 4(y-3)$ and

 $x^2+y^2-2x-hy-c=0(c>0)~~{
m is}~3,{
m is}~$


A. $(2,\infty)$

- $\mathsf{B.}\left(4,\infty
 ight)$
- C.(2,4)

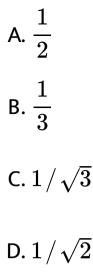
D. none

Answer: B

 $3x^2 + 4y^2 - 6x - 8y + 4 = 0$ is

A. $\frac{1}{2}$

 $\mathsf{B.}\,1/\sqrt{2}$


 $\mathsf{C}.\,\sqrt{2}$

D. none

Answer: A

Watch Video Solution

22. The eccentricity of an ellipse, the length of whose minor axis is equal to the distance between the foci, is

Answer: D

 $x=t^2+t+1$, y = t^2-t+1 represents :

A. a parabola with latus rectum 4

B. an ellipse centre at (1,2)

C. a parabola with latus rectum 2

D. an hyperbola with eccentricity $\sqrt{2}$

Answer: C

Watch Video Solution

24. The coordinates of the vertex of the parabola

$$y^2=4(x+y)$$
 is

A. (0,0)

B. (2,1)

C. (-1,2)

D. (1,2)

Answer: C

25. If ASC is a focal chord of the parabola $y^2 = 4ax$ and AS = 5, SC = 9, then length of latus rectum of the parabola equals

A.
$$\frac{90}{7}$$

B. $\frac{7}{90}$
C. $\frac{45}{14}$
D. $\frac{14}{45}$

Answer: A

Watch Video Solution

26. The line
$$x = 2y$$
 intersects the ellipse $\frac{x^2}{4} + y^2 = 1$ at the points P and Q . The equation of the circle with PQ as diameter is

A.
$$x^2+y^2=rac{1}{2}$$

B. $x^2+y^2=1$
C. $x^2+y^2=2$
D. $x^2+y^2=rac{5}{2}$

Answer: D

27. The transverse axis of a hyperbola is along the x-axis and its length is 2a. The vertex of the hyperbola bisects the line segment joining the

centre and the focus. The equation of the hyperbola is

A.
$$6x^2 - y^2 = 3a^2$$

B. $x^2 - 3y^2 = 3a^2$
C. $x^2 - 6y^2 = 3a^2$
D. $3x^2 - y^2 = 3a^2$

Answer: D

28. Let the foci of the ellipse $rac{x^2}{lpha}+y^2=1$ subtend a right angle at a point P. Then, the locus of P is (A) $x^2 + y^2 = 1$ (B) $x^2 + y^2 = 2$ (C) $x^2 + y^2 = 4$ (D) $x^2 + y^2 = 8$ A. $x^2 + y^2 = 1$ B. $x^2 + y^2 = 2$ C. $x^2 + y^2 = 4$ D. $x^2 + y^2 = 8$

Answer: D

Watch Video Solution

29. The locus of the middle points of all chords of the parabola $y^2 = 4ax$ passing through the vertex is

A. a straight line

B. an ellipse

C. a parabola

D. a circle

Answer: C

Watch Video Solution

30. The coordinates of the focus of the parabola described parametrically by $x = 5t^2 + 2$. y = 10t + 4 are A. (7,4) B. (3,4) C. (3,-4) D. (-7,4) Answer: A

Wb Jee Workout Category 2 Single Option Correct Type

1. If the equation of a chord of the parabola $y^2 = 4ax$ is y = mx + c, then its mid point is

$$\begin{array}{l} \mathsf{A.} \left(\frac{2a-mc}{m^2}, \frac{2a}{m} \right) \\ \mathsf{B.} \left(\frac{2a+mc}{m^2}, \frac{2a}{m} \right) \\ \mathsf{C.} \left(\frac{2a-mc}{m^2}, \frac{-2a}{m} \right) \\ \mathsf{D.} \left(\frac{2m-ac}{m^2}, \frac{2a}{m} \right) \end{array}$$

- 2. The ,locus of the point of intersection of two perpendicular tangents to the parabola $y^2 = 4ax$ is
 - A. x+a=0

B. x-a=0

- C. y+a=0
- D. y-a=0

3. If the parabola $y = x^2 + bx + c$, touches the straight line x=y at the point (1,1) then the value of b+c is

A. 0

B. 2

 $\mathsf{C}.-2$

D. 3

4. The mid point of the chord 16x+9y=25 to the

ellipse
$$\displaystyle rac{x^2}{9} + \displaystyle rac{y^2}{16} = 1$$
 is

A. (1,-1)

- B. (-1,1)
- C. (-1,1)
- D. (1,1)

Answer: D

5. If the normal at an end of a latus rectaum of an ellipse passes through an extremity of the minor axis then the eccentricity of the ellispe satisfies .

A.
$$e^2 + e + 1 = 0$$

B. $e^4 + e^2 + 1 = 0$
C. $e^4 - e^2 - 1 = 0$
D. $e^4 + e^2 - 1 = 0$

Answer: D

6. Equation of pair of tangents to the ellipse $9x^2 + 25y^2 = 225$ from a point (4,2) is

$$9x^2+25y^2-225=\left(rac{36x+50y-225}{\sqrt{19}}
ight)^2$$

A.

$$9x^2+25y^2-225=\left(rac{36x+25y-225}{15\sqrt{19}}
ight)^2$$

$$igg(rac{x^2}{25}+rac{y^2}{9}-1igg)19=igg(rac{36x+25y-225}{15}igg)^2$$

D. none

Answer: A

7. If the tangent drawn at a point $(t^2, 2t)$ on the parabola $y^2 = 4x$ is same as normal drawn at $(\sqrt{5}\cos\alpha, 2\sin\alpha)$ on the ellipse $\frac{x^2}{5} + \frac{y^2}{4} = 1$, then which of following is not true ?

A.
$$t=\pmrac{1}{\sqrt{5}}$$

B. $lpha=- an^{-1}2$

C.
$$lpha= an^{-1}2$$

D. none

Answer: D

8. If one end of a focal chord of the parabola $y^2 = 4ax$ be $(at^2, 2at)$, then the coordinates of its other end is

A.
$$\left(\frac{a}{t^2}, \frac{-2a}{t}\right)$$

B. $\left(\frac{-a}{t}, \frac{2a}{t}\right)$

$$\mathsf{C}.\left(\frac{-1}{t^2},\frac{a}{t}\right)$$
$$\mathsf{D}.\left(\frac{-a}{t},\frac{1}{t^2}\right)$$

Answer: A

9. if the tangent to the parabola y = x(2 - x)at the point (1,1) intersects the parabola at P. find the co-ordinate of P.

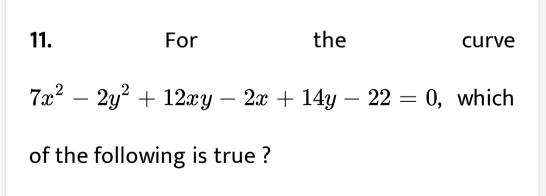
A. (1,2)

B. (1,1)

C. (3,-2)

D. (-1,-4)

Answer: B


10. If a circle cuts a rectangular hyperbola xy=1 in four points P,Q,R,S and the parameters of these four points be t_1, t_2, t_3 and t_4 respectively and $-20t_1t_2t_3t_4 = k$, then value of k equals B. -1

C.-4

D. none

Answer: D

Watch Video Solution

A. an hyperbola with eccentricity $\sqrt{3}$

2x + y - 1 = 0

C. an hyperbola with focus (1, 2)

D. All of these

Answer: D

12. The angle between the tangents drawn from the point (1,4) to the parabola $y^2=4x$ is

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: C

13. The normals at three points P,Q,R of the parabola $y^2=4ax$ meet in (h,k) The centroid

of triangle PQR lies on (A)x=0(B)y=0(C)x=-a(D)y=a`

A. x=0

B. y=0

C. x=-a

D. y=a

Answer: B

14. The set of a points on the axis of the parabola $y^2 - 4x - 4y + 12 = 0$ from which all three normals to the parabola are real is

A. (k,2), k>4

 $\mathsf{B.}\,(k,0), k>5$

 $\mathsf{C}.\,(k,1), k>4$

D. none

Answer: A

15. If for a conic section a focus is (-1,1), eccentricity=3 and the equation of the corresponding directrix is x-y+3=0, then the equation of this conic section is

A.
$$7x^2 - 18xy + 7y^2 + 50x - 50y + 77 = 0$$

B. $7x^2 + 18xy + 7y^2 = 1$
C. $7x^2 + 18xy + 7y^2 - 50x + 50y + 77 = 0$

D. none

Answer: A

Wb Jee Workout Category 3 One Or More Than One Option Correct Type

1. For hyperbola xy=4, which of the following is not true ?

A. Equations of transverse axis is $y\pm x=0$

B. Eccentricity, $e=\sqrt{2}$

C. Co-ordinates of foci are $\left(2\sqrt{2},2\sqrt{2}
ight)$ and

 $ig(-2\sqrt{2},\ -2\sqrt{2}ig)$ and equation of

directrix is given by $x+y\pm 2\sqrt{2}=0$

D. none

Answer: D

2. For what value of λ , the line y=2x+ λ touches the hyperbola $9x^2-5y^2=45$?

A. $\sqrt{11}$

B. 11

C. -11

$\mathsf{D.}-\sqrt{11}$

Answer: A::D

Watch Video Solution

3. The ratio of the areas of a triangle formed with vertices

 $Aig(at_1^2,2at_1ig),\,Big(at_2^2,2at_2ig),\,Cig(at_3^2,2at_3ig)$ lies on the parabola $y^2=4ax$ and triangle formed by the tangents at A,B,C is

B. 2:1

C. 2:3

D. 3:2

Answer: B

Watch Video Solution

4. Length of common tangents to the hyperbolas
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 and $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ is

A.
$$x+y=\sqrt{a^2-b^2}$$

B.
$$x-y=\sqrt{a^2-b^2}$$

$$\mathsf{C.}\,x+y=\,-\,\sqrt{a^2-b^2}$$

D.
$$x-y=\,-\sqrt{a^2-b^2}$$

Answer: A::B::C::D

Watch Video Solution

5. Let P be the point on the parabola $y^2=4x$ which is at the shortest distance from the centre S of the circle $x^2+y^2-4x-16y+64=0$. Let

Q be the point on the circle dividing the lie segment SP internally. Then

A.
$$SP=2\sqrt{5}$$

B.
$$SQ{:}\,QP=\left(\sqrt{5}+1
ight){:}\,2$$

C. the x-intercept of the normal to the parabola at P is 2

D. the slope of the tangent to the circle at Q

is
$$\frac{1}{2}$$

Answer: A::D

6. The equation $rac{x^2}{14-a}+rac{y^2}{9-a}=1$ represent

A. an ellipse if a < 9

B. a hyperbola ifi 9 < a < 14

C. a hyperbola if a>14

D. an ellipse a > 9

Answer: A::B

7. The point on the parabola $y^2 = 4x$ at which it cuts the straight line joining (0,0) and (2,3) is

A. (0,0)

B. (2,3)

C. (16/9,8/3)

D. (1,2)

Answer: A::C

Watch Video Solution

8. If the line ax + by + c = 0 is a tangent to the

curve xy = 4 then

A.
$$a < 0, b > 0$$

- B. $a \le 0, b > 0$
- C. a < 0, b < 0
- D. $a \leq 0, b < 0$

Answer: C

Watch Video Solution

9. If parametric representation of a parabola is

$$x=2+t^2 ext{ and } y=2t+1$$
, then

A. axis of parabola is y=1

B. equation of directrix is x=1

C. focus of parabola is S(3,1)

D. vertex of parabola is V(2,1)

Answer: A::B::C::D

10. Let $x^2 + 3xy + 2y^2 + 2x + 3y = 0$ а hyperbola, then which of the following is true? A. equation of asymptotes is $x^2 + 3xy + 2y^2 + 2x + 3y + 1 = 0$ B. Equations of asymptotes are x + y + 1 = 0 and x + 2y + 1 = 0C. The equation of conjugate hyperbola is $x^2 + 3xy + 2y^2 + 2x + 3y + 2 = 0$ D. none

Answer: A::B::C

11. Let P and Q be distinct points on the parabola $y^2 = 2x$ such that a circle with PQ as diameter passes through the vertex O of the parabola. If P lies in the first quadrant and the area of the triangle ΔOPQ is $3\sqrt{2}$, then which of the following is (are) the coordinates of P?

A.
$$(4, 2\sqrt{2})$$

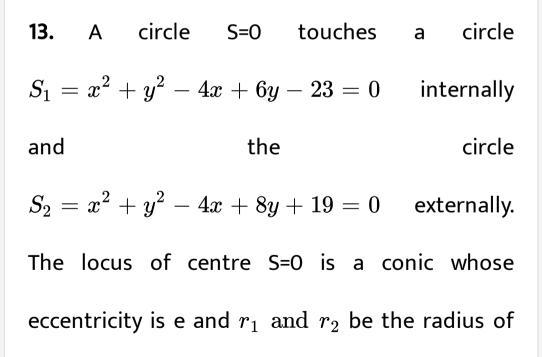
B. $(9, 3\sqrt{3})$
C. $\left(\frac{1}{4}, \frac{1}{\sqrt{2}}\right)$

D. $\left(1,\sqrt{2}\right)$

Answer: A::D

Watch Video Solution

12. The locus of mid-points of a focal chord of the ellipse
$$\displaystyle rac{x^2}{a^2} + \displaystyle rac{y^2}{b^2} = 1$$


A. director circle with radius $\sqrt{a^2+b^2}$

B.
$$rac{x^2}{a^2}+rac{y^2}{b^2}-rac{ex}{a}=0$$

C. $rac{x^2}{a^2}+rac{y^2}{b^2}+rac{ex}{a}=0$

D. Mutually \perp tangents to the ellipse

Answer: B::C

 S_1 & S_2 respectively and $[\ \cdot\]$ denotes greatest integer, then

A.
$$r_1+r_2=7$$

B.
$$r_1 - r_2 = 5$$

$$\mathsf{C}.\left[\frac{1}{e}\right] = 7$$

D. none

Answer: A::B::C

14. Acute angle between two curve

$$x^2 + y^2 = a^2\sqrt{2}$$
 and $x^2 - y^2 = a^2$ is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{12}$
Answer: B

O Watch Video Solution

15. The eccentricity of the hypebola whose asymptotes are 5x + 12y - 7 = 0 and 12x - 5y + 5 = 0 is A. $\sqrt{3}$ B. $2\sqrt{3}$ C. 2 D. none Answer: D Watch Video Solution

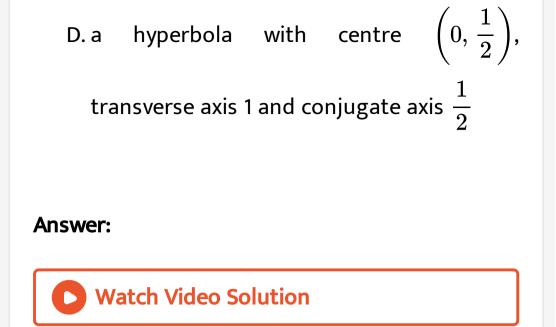
1. Lines x + y = 1 and 3y = x + 3 intersect the ellipse $x^2 + 9y^2 = 9$ at the points P,Q,R. the area of the triangles PQR is

A.
$$\frac{36}{5}$$

B. $\frac{18}{5}$
C. $\frac{9}{5}$
D. $\frac{1}{5}$

Answer: B

2. For the variable t, the locus of the point of intersection of the lines 3tx - 2y + 6t = 0 and 3x + 2ty - 6 = 0 is


A. the ellipse
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

B. the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$
C. The hyperbola $\frac{x^2}{4} - \frac{y^2}{9} = 1$
D. the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$

Answer: A

3. The locus of the midpoints of the chords of an ellipse $x^2 + 4y^2 = 4$ that are drawn from the positive end of the minor axis, is

A. a circle with centre $\left(\frac{1}{2}, 0\right)$ and radius 1 B. a parabola with focus $\left(\frac{1}{2}, 0\right)$ and directrix x=-1 C. an ellipse with centre $\left(0, \frac{1}{2}\right)$, major axis 1 and minor axis $\frac{1}{2}$

4. For the variable t, the locus of the points of

intersection of lines $x-2y=t ext{ and } x+2y=rac{1}{t} ext{ is }$

A. the straight line x=y

B. the circle with centre at the origin and

radius 1

C. the ellipse with centre at the origin and

one focus
$$\left(rac{2}{\sqrt{5}},0
ight)$$

D. the hyperbola with centre at the origin

and one focus
$$\left(\frac{\sqrt{5}}{2}, 0 \right)$$

Watch Video Solution

Answer: D

5. The line y = x intersects the hyperbola $\frac{x^2}{9} - \frac{y^2}{25} = 1$ at the points P and Q. The eccentricity of ellipse with PQ axis and minor axis of length $\frac{5}{\sqrt{2}}$ is (A) $\frac{\sqrt{5}}{3}$ (B) $\frac{5}{\sqrt{3}}$ (C) $\frac{2(\sqrt{2})}{3}$ (D) $\frac{3}{\sqrt{2}}$ A. $\frac{\sqrt{5}}{3}$

B.
$$\frac{5}{\sqrt{3}}$$

C. $\frac{5}{9}$
D. $\frac{25}{9}$

6. If the distance between the foci of an ellipse is half the length of its latus rectum, then the eccentricity of the ellipse is

A.
$$rac{1}{4} \left(\sqrt{5} - 1
ight)$$

B. $rac{1}{2} \left(\sqrt{5} + 1
ight)$
C. $rac{1}{2} \left(\sqrt{5} - 1
ight)$
D. $rac{1}{4} \left(\sqrt{5} + 1
ight)$

Answer: C

7. If P be a point on the parabola $y^2 = 4ax$ with focus F. Let Q denote the foot of the perpendicular from P onto the directrix. Then, $\frac{\tan \angle PQF}{\tan \angle PFQ}$ is

A. 1

B. 1/2

C. 2

D. 1/4

Answer: A

Watch Video Solution

8. if y = 4x + 3 is parallel to a tangent to the parabola $y^2 = 12x$, then its distance from the normal parallel to the given line is

A.
$$\frac{213}{\sqrt{17}}$$

B. $\frac{219}{\sqrt{17}}$
C. $\frac{211}{\sqrt{17}}$

D. $\frac{210}{\sqrt{17}}$

Answer: B

Watch Video Solution

9. The point on the parabola $y^2 = 64x$ which is nearest to the line 4x + 3y + 35 = 0 has coordinates

A. (9,-24)

B. (1,81)

C. (4,-16)

D. (-9,-24)

Answer: A

Watch Video Solution

10. The value of
$$\lambda$$
 for which the curve $(7x+5)^2+(7y+3)^2=\lambda^2(4x+3y-24)^2$ represents a parabola is

$$A. \pm \frac{6}{5}$$
$$B. \pm \frac{7}{5}$$
$$C. \pm \frac{1}{5}$$

Answer: B

Watch Video Solution

11. The equation of the common tangent with positive slope to the parabola $y^2=8\sqrt{3}x$ and hyperbola $4x^2-y^2=4$ is

A.
$$y=\sqrt{6}x+\sqrt{2}$$

B.
$$y=\sqrt{6}x-\sqrt{2}$$

C.
$$y=\sqrt{3}x+\sqrt{2}$$

D.
$$y=\sqrt{3}x-\sqrt{2}$$

Answer: A

12. The the vertex of the conic $y^2 - 4y = 4x - 4a$ always lies between the straight lines x + y = 3 and 2x + 2y - 1 = 0then

A.
$$2 < a < 4$$

B. $-rac{1}{2} < a < 2$

C.
$$0 < a < 2$$

D. $-rac{1}{2} < a < rac{3}{2}$

Answer: B

13. Number of intersecting points of the coincs

$$4x^2 + 9y^2 = 1 \, ext{ and } \, 4x^2 + y^2 = 4 \, ext{is}$$

A. 1

B. 2

C. 3

D. 0

Answer: D

Watch Video Solution

14. Then equation of auxiliary circle of the ellipse $16x^2 + 25y^2 + 32x - 100y = 284$ is (A)

$$x^2 + y^2 + 2x - 4y - 20 = 0$$
 (B)

$$x^2 + y^2 + 2x - 4y = 0$$
 (C)

$$(x+1)^2 + (y-2)^2 = 400$$
 (D)
 $(x+1)^2 + (y-2)^2 = 225$

A.
$$x^2 + y^2 + 2x - 4y - 20 = 0$$

B. $x^2 + y^2 + 2x - 4y = 0$
C. $(x + 1)^2 + (y - 2)^2 = 400$
D. $(x + 1)^2 + (y - 2)^2 = 225$

Answer: A

15. If PQ is a double ordinate of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ such that OPQ is an equilateral triangle, O being the center of the hyperbola,

then find the range of the eccentricity e of the

hyperbola.

A.
$$1 < e < rac{2}{\sqrt{3}}$$

B. $e = rac{2}{\sqrt{2}}$
C. $e = rac{\sqrt{3}}{2}$
D. $e > rac{2}{\sqrt{3}}$

Answer: D

16. The line $y = x + \lambda$ is a tangent to an ellipse

 $2x^2+3y^2=1$ then

A.-2

B. 1

C.
$$\sqrt{\frac{5}{6}}$$

D. $\sqrt{\frac{2}{3}}$

Answer: C

Watch Video Solution

17. The locus of the point of intersection of the straight lines $\frac{x}{a} + \frac{y}{b} = k$ and $\frac{x}{a} - \frac{y}{b} = \frac{1}{k}$, where k is a non-zero real variable, is given by

A. a straight line

B. an ellipse

C. a parabola

D. a hyperbola

Answer: D

Watch Video Solution

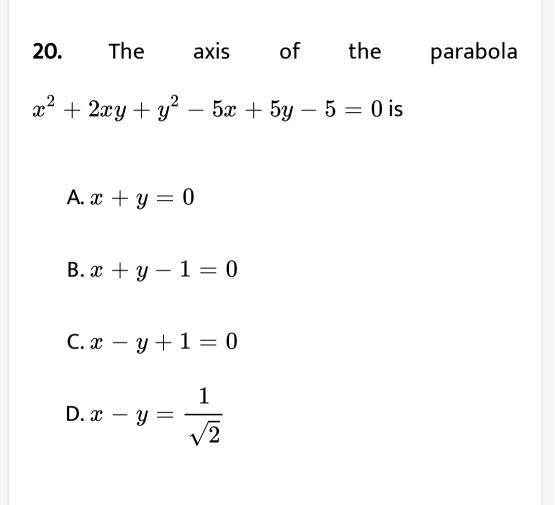
18. Let P be the foot of the perpendicular from focus S of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ on the line bx - ay = 0 and let C he the centre of the hyperbola. Then the area of the rectangle whose sides are equal to that of SP and CP is

A. 2ab

B.ab

C.
$$rac{\left(a^2+b^2
ight)}{2}$$

D.
$$\frac{a}{b}$$


Answer: B

19. B is extermity of the minor axis of an elipse whose foci are S and S'. If $\angle SBS'$ is a right angle, then the eccfentricity of the ellipse is

A.
$$\frac{1}{2}$$

B. $\frac{1}{\sqrt{2}}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$

Answer: B

Answer: A

Watch Video Solution

21. The line segment joining the foci of the hyperbola $x^2 - y^2 + 1 = 0$ is one of the diameters of a circle. The equation of the circle is

A.
$$x^2 + y^2 = 4$$

B.
$$x^2+y^2=\sqrt{2}$$

C.
$$x^2+y^2=2$$

D.
$$x^2+y^2=2\sqrt{2}$$

Answer: C

Watch Video Solution

22. The focus of the conic $x^2 - 6x + 4y + 1 = 0$

is

A. (2,3)

B. (3,2)

C. (3,1)

D. (1,4)

Answer: C

23. Equation of common tangent of $y = x^2, y = -x^2 + 4x - 4$ is A. 1 **B**. 2 C. 3 D. 4 **Answer: B** Watch Video Solution

24. Let the eccentricity of the hyperbola $rac{x^2}{a^2}-rac{y^3}{b^2}=1$ be reciprocal to that of the ellipse $x^2+9y^2=9,$ then the ratio $a^2:b^2$ equals

A. 8:1

B.1:8

C. 9:1

D.1:9

Answer: A

25. Let a, r, s, t be non-zero real numbers. Let $P(at^2, 2at), Q(ar^2, 2ar) \text{ and } S(as^2, 2as)$ be distinct points on the parabola $y^2 = 4ax$. Suppose that PQ is the focal chord and lines QR and PK are parallel, where K the point (2a,0). If st=1, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate is

A.
$$rac{t}{1-t^2}$$

B. $rac{1-t^2}{t}$

C.
$$\frac{t^2+1}{t}$$

D. $\frac{t^2-1}{t}$

Answer: D

26. Let P be a point on the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line through P parallel to the y-axis meets the circle $x^2 + y^2 = 9$ at Q where P,Q are on the same side of the x-axis. If R is a point on PQ such that $\frac{PR}{RQ} = \frac{1}{2}$, then locus of R is

A.
$$rac{x^2}{9} + rac{9y^2}{49} = 1$$

B. $rac{x^2}{49} + rac{y^2}{9} = 1$
C. $rac{x^2}{9} + rac{y^2}{49} = 1$
D. $rac{9x^2}{49} + rac{y^2}{49} = 1$

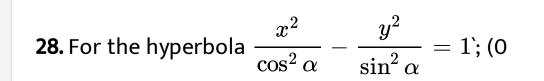
Answer: A

27. Let P(4,3) be a point on the hyperbola $rac{x^2}{a^2} - rac{y^2}{b^2} = 1.$ If the normal at P intersects the

x-axis at (16,0), then the eccentricity of the

hyperbola is

A.
$$\frac{\sqrt{5}}{2}$$


 $\mathsf{B.}\,2$

$$\mathsf{C}.\sqrt{2}$$

D. $\sqrt{3}$

Answer: B

> Watch Video Solution

A. directrix

B. vertices

C. foci

D. eccentricity

Answer: C

29. S and T are foci of an ellipse and B is an end of the minor axis , if STB is an equilateral triangle , the eccentricity of the ellipse , is

A.
$$\frac{1}{4}$$

B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{2}{3}$

Answer: C

30. The equation of th directrices of the hyperbola $3x^2 - 3y^2 - 18x + 12y + 2 = 0$ is

A.
$$x=3\pm\sqrt{rac{13}{6}}$$

B. $x=3\pm\sqrt{rac{6}{13}}$
C. $x=6\pm\sqrt{rac{13}{3}}$
D. $x=6\pm\sqrt{rac{3}{13}}$

Answer: A

31. P is the extremity of the latuscrectum of ellipse $3x^2 + 4y^2 = 48$ in the first quadrant. The eccentric angle of P is

A.
$$\frac{\pi}{8}$$

B. $\frac{3\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{2\pi}{3}$

Answer: C

32. The length of conjugate axis of a hyperbola is greater than the length of transverse axis. Then the eccentricity e is

$$\begin{array}{ll} \mathsf{A.} &= \sqrt{2} \\ \mathsf{B.} &> \sqrt{2} \\ \mathsf{C.} &< \sqrt{2} \\ \mathsf{D.} &< \frac{1}{\sqrt{2}} \end{array}$$

Answer: B

Wb Jee Previous Years Questions Category 2 Single Option Correct Type

1. A line passing through the point of intersection of x + y = 4 and x - y = 2 makes an angle $\tan^{-1}\left(\frac{3}{4}\right)$ with the x-axis. It intersect the parabola $y^2 = 4(x - 3)$ at points (x_1, y_1) and (x_2, y_2) respectively. Then, $|x_1 - x_2|$ is equal to

A.
$$\frac{16}{9}$$

B. $\frac{32}{9}$
C. $\frac{40}{9}$
D. $\frac{80}{9}$

Answer: B

2. The equation of hyperbola whose coordinates of the foci are $(\pm 8, 0)$ and the length of the latus rectum is 24 units. Is

A.
$$3x^2 - y^2 = 48$$

B.
$$4x^2 - y^2 = 48$$

$$\mathsf{C.}\,x^2-3y^2=48$$

D.
$$x^2-4y^2=48$$

Answer: A

3. The locus of the midpoints of all chords of the parabola $y^2 = 4ax$ through its vertex is another parabola with directix

A. x=-a

B. x=a

C. x=0

D.
$$x=~-~rac{a}{2}$$

Answer: D

4. Tangents are drawn to the ellipse $rac{x^2}{9}+rac{y^2}{5}=1$ at the end of latus rectum. Find

the area of quadrilateral so formed

A. 27 sq. units

B.
$$rac{13}{2}$$
 sq. units

C.
$$rac{15}{4}$$
 sq. units

D. 45 sq. units

Answer: A

5. Consider the parabola $y^2 = 4x$, let P and Q be two points (4, -4) and (9, 6) on the parabola. Let R be a moving point on the arc of the parabola whose x-coordinate is between P and Q. If the maximum area of triangle PQR is K, then $(4K)^{1/3}$ is equal to

A. $\angle PQR = 90^{\circ}$

B. R(4, 4)

C.
$$R\left(\frac{1}{4}, 1\right)$$

D. $R\left(1, \frac{1}{4}\right)$

Answer: C

Wb Jee Previous Years Questions Category 3 One Or More Than One Option Correct Type

1. The equation
$$16x^2 - 3y^2 - 3y^2 - 32x + 12y - 44 = 0$$
 represents a hyperbola. the length of whose

transvers axis is $4\sqrt{3}$ the length of whose transvers axis is 4 whose center is (-1,2)whose eccentricity is $\sqrt{\frac{19}{3}}$

A. length of the transverse axis is $2\sqrt{3}$

B. length of each latus rectum is $32/\sqrt{3}$

C. eccentricity is
$$\sqrt{19/3}$$

Watch Video Solution

D. equation of a directrix is $x = \frac{\sqrt{19}}{3}$

Answer: A::B::C

2. If the parabola $x^2 = ay$ makes an intercept of length $\sqrt{40}$ unit on the line y - 2x = 1 then a is equal to

A. 1

 $\mathsf{B.}-2$

 $\mathsf{C}.-1$

 $\mathsf{D}.2$

Answer: A::B

Watch Video Solution

3. On the ellipse $4x^2 + 9y^2 = 1$, the points at which the tangents are parallel to the line 8x=9y are $\left(rac{2}{5},rac{1}{5}
ight)$ (b) $\left(-rac{2}{5},rac{1}{5}
ight)$ $\left(-rac{2}{5},\ -rac{1}{5}
ight)$ (d) $\left(rac{2}{5},\ -rac{1}{5}
ight)$ A. $\left(\frac{2}{5}, \frac{1}{5}\right)$ B. $\left(-\frac{2}{5},\frac{1}{5}\right)$ $C.\left(-\frac{2}{5}, -\frac{1}{5}\right)$ D. $\left(\frac{2}{5}, -\frac{1}{5}\right)$

Answer: B::D

4. A hyperbola, having the transverse axis of length $2\sin\theta$, is confocal with the ellipse $3x^2 + 4y^2 = 12$. Then its equation is

A.
$$x^2 \sin^2 heta - y^2 \cos^2 heta = 1$$

B.
$$x^2 \mathrm{cosec}^2 heta - y^2 \mathrm{sec}^2 \, heta = 1$$

C.
$$ig(x^2+y^2ig) \sin^2 heta = 1+y^2$$

D.
$$x^2 \mathrm{cosec}^2 heta = x^2 + y^2 + \sin^2 heta$$

Answer: B

Watch Video Solution

5. Let A and B be two distinct points on the parabola $y^2 = 4x$. If the axis of the parabola touches a circle of radius r having AB as its diameter, then the slope of the line joining A and B can be

A.
$$-\frac{1}{r}$$

B. $\frac{1}{r}$
C. $\frac{2}{r}$
D. $-\frac{2}{r}$

Answer: C::D

6. Equation of a tangent passing through (2, 8) to

the hyperbola $5x^2-y^2=5$ is

A.
$$3x-y+2=0$$

B.
$$3x + y - 14 = 0$$

C.
$$23x - 3y - 22 = 0$$

D.
$$3x - 23y + 178 = 0$$

Answer: A::C

