

MATHS

BOOKS - MTG WBJEE MATHS (HINGLISH)

DERIVATIVES

Wb Jee Workout

1. The value of $\dfrac{dy}{dx}$ at $x=\dfrac{i}{2},$ where y is given by

$$y=x^{\sin x}+\sqrt{x}$$
 is

A.
$$1+\frac{1}{\sqrt{2\pi}}$$

B. 1

C.
$$\frac{1}{\sqrt{2\pi}}$$

$$-\frac{1}{\sqrt{2}}$$

Answer: A

View Text Solution

- **2.** If f(x)=|x-5| and $g(x)=f(f(x))\, orall \, x>10,$ then g'(x)

equals

A. 1

C. 0

- B. 1
- D. None of these

Answer: A

3. Let
$$f(x)$$
 be twice differentiable function such that

$$f'(0)=2$$
 , then, $\lim_{x
ightarrow 0}rac{2f(x)-3f(2x)+f(4x)}{x^2}$, is

B. 3

C. 12

D. 0

Answer: A

Watch Video Solution

4. If $y = \log_a x$ then $\frac{dy}{dx} atx = e$ is

A.
$$\frac{1}{e \log_e a}$$

B.
$$\frac{\log ea}{e}$$

C. $e \log_e a$

D. None of these

Answer: A

Watch Video Solution

- **5.** If $x^2+y^2=4$, then $y\frac{dy}{dx}+x$ is equal to
 - A. 4
 - B. 0
 - C. 1
 - D. 1

Answer: B

6. If
$$x^{mx^{mx^{mx}... ext{to}\infty}}=y^{ny^{ny^{ny}... ext{to}\infty}},$$
 then $rac{dy}{dx}=$

A.
$$\frac{(m-n)}{m+n} \left(\frac{x}{y}\right)$$

B.
$$\frac{m+n}{m-n}\left(\frac{y}{x}\right)$$

C.
$$\frac{mx}{ny}$$

D.
$$\frac{my}{mx}$$

Answer: D

Watch Video Solution

7. Let $f(x) = x^{3/2} - \sqrt{x^2 + x^4}$, then

A. L.H.D. at x=0 exists but R.D.H. at x=0 does not exist

B. f(x) is differentiable at x = 0

C. R.H.D. at x=0 exists but L.H.D. at x=0 does not exists

D. None of these

Answer: C

Watch Video Solution

8. If P (x) is a polynomial of degree less than or equal to 2 and S is the set of all such polynomials so that

$$P(0) = 0, P(1) = 1, \text{ and } P'(x) > 0 \,\forall x \in [0.1], \text{ then}$$

A.
$$S=\phi$$

B.
$$S=ax+(1-a)x^2\,orall a\in(0,2)$$

$$\mathsf{C.}\, S = ax + (1-a)x^2\,\forall a \in (0,\infty)$$

D.
$$S=ax+(1-a)x^2\,orall a\in(0,1)$$

Answer: B

Watch Video Solution

9. The value of c in Rolle's theorem for the function

$$f(x) = \cos 2 \Bigl(x - rac{\pi}{4} \Bigr)$$
 in $\Bigl[0, rac{\pi}{2} \Bigr]$ is

A.
$$\frac{\pi}{3}$$

B.
$$\frac{\pi}{6}$$

C.
$$\frac{\pi}{2}$$

D.
$$\frac{\pi}{4}$$

Answer: D

10. Rolle's theorem is not applicable to the function f(x) = |x| for $-2 \le x \le 2$ becaue

A. f is continuous for
$$-2 \leq x \leq 2$$

B. f is continous for
$$-2 \leq x \leq 2$$

C.
$$f(-2) = f(2)$$

Answer: D

11. If $f(x)=x(x-1)(x-2), 0\leq x\leq 4$ and the poind ξ satisfies mean values theorem for f (x), then

A.
$$< \xi < 1$$

B.
$$\xi > 3$$

C.
$$< \xi < \frac{1}{2}$$

D.
$$1<\xi<3$$

Answer: B

View Text Solution

12.
$$f(x) = \begin{cases} \frac{\sin^3 x^2}{x}, & x \neq 0 \text{ is} \\ 0.x = -0 \end{cases}$$

A. continous but not derivable at x =0

B. neither continous nor differentiable at x=0

C. continuous and differentiable at x=0

D. None of these

Answer: C

View Text Solution

13. If f'(2)=1, then $\lim_{h o 0}rac{f(2+h^2)-f(2-h^2)}{2h^2}$ is equal to

A. 0

B. 1

C. 2

Answer: B

Watch Video Solution

14. If $y^2 = P(x)$ is a polynomial of degree 3, then

$$2igg(rac{d}{dx}igg)igg(y^2rac{d^2y}{dx^2}igg)$$
 is equal to $P^x+P^{\,\prime}(x)$ (b) $P^x\dot{P}^x$

 $P(x)\overset{\cdot}{P}^{x}$ (d) a constant

A.
$$p^m + p'$$

B. p'p'

 $\mathsf{C}.\,pp'$

D. a constnat

Answer: C

15. Find the value of c in Rolle's theorem for the function $f(x) = \cos 2x$ on $[0,\pi]$ is

A.
$$\frac{\pi}{4}$$

B.
$$\frac{\pi}{2}$$

C.
$$\frac{\pi}{6}$$

D.
$$\frac{\pi}{3}$$

Answer: B

A.
$$\frac{1}{x \log 5. \log x}$$

$$\mathsf{B.} \; \frac{-1}{x \log .5 \log x}$$

$$\mathsf{C.}\,\frac{1}{x\log x}$$

D.
$$\frac{1}{x \log 7. \log x}$$

Answer: A

Watch Video Solution

17. If $y=rac{A}{x}-Bx^2$, then $x^2rac{d^2y}{dx^2}=$

A. 2y

B. y^2

C. y^3

D. y^4

Answer: A

Watch Video Solution

18.
$$f(x) = \sin^{-1}\!\left(\frac{1+x^2}{2x}\right)$$
 is

A. differentiable at x=1

B. continous $\, orall x \in R$

C. neither continuous nor differentiable at x=1

D. continous but not differentiable at x=1

Answer: C

19. If for a continuous function
$$f,\,f(0)=f(1)=0,\,f^{\,\prime}(1)=2andy(x)=f(e^x)e^{f\,(x)}$$
 , then

y'(0) is equal to a. 1 b. 2 c. 0 d. none of these

Answer: A

20. If
$$y=\tan^{-1}\sqrt{\dfrac{1-\sin x}{1+\sin x}},$$
 then the vluae of $\dfrac{dy}{dx}$ at $x=\dfrac{\pi}{2}$ is

$$A. - 1/2$$

B. 1/2

C. 1

D. -1

Answer: A

Watch Video Solution

21. If $y=\sqrt{f(x)+\sqrt{f(x)+\sqrt{f(x)+.....(\infty)}}}$ then $\frac{dy}{dx}$

A.
$$rac{f(x)}{2y-1}$$

B.
$$\frac{1}{f(x)(2y-1)}$$

C.
$$\frac{f'(x)}{2y-1}$$

D. None of these

Answer: C

Watch Video Solution

22. If a + b + c = 0 then the quadratic equation

 $3ax^2 + 2bx + c = 0$ has

A. at least one root in [0, 1]

B. one root in [2,3] and the other in [-2,-1]

C. imaginary roots

D. None of these

Answer: A

23. Find the value of c in Lagrange's mean value theorem for the function $f(x) = \log_e x$ on [1,2].

$$A. \log 2$$

$$B.1 - e$$

$$\mathsf{C}.\log_2 e$$

D.
$$\frac{1}{e}$$

Answer: C

24. If
$$\frac{x}{x^2-3x+2}$$
, find $\frac{d^2y}{dx^2}$.

A.
$$\dfrac{2}{\left(x-1
ight)^3}+\dfrac{2}{\left(x-2
ight)^3}$$

B.
$$\dfrac{1}{{(x-1)}^3}+\dfrac{1}{{(x-1)}^3}$$
C. $\dfrac{2}{{(x-1)}^3}+\dfrac{2}{{(x+2)}^3}$
D. $\dfrac{-2}{{(x-1)}^3}+\dfrac{4}{{(x-2)}^3}$

Answer: D

Watch Video Solution

25. If
$$f(5)=7$$
 and $f'(5)=7$, then $It_{x
ightarrow 5} rac{xf(5)-5f(x)}{x-5}$ is

given by

A. 35

B. -35

C. 28

D. - 28

Answer: D

Watch Video Solution

26. If the function

function of

$$f(x) = \left[rac{(x-5)^2}{A}
ight] \sin(x-5) + a\cos(x-2), ext{where}[\;\cdot\;]$$

denotes the greatest integer function, is continuous and differentiable in (7, 9), then

A.
$$\forall \in [8, 64]$$

B.
$$A\in(0,8]$$

C.
$$A \in [64,\infty)$$

D. None of these

Answer: C

27. If
$$xy=e-e^y$$
 then $\dfrac{d^2y}{dx^2}atx=0$ is

A.
$$\frac{1}{e}$$
B. $\frac{1}{e^3}$

$$\mathsf{C.}\,\frac{1}{e^2}$$

D. None of these

Answer: C

View Text Solution

28. Let $f(x) = |\sin x|$ then f(x) is

A. continous everwhere

B. non-differentiable at odd and even multiple of π

C. everywhere continuous but not-differentiable at

$$x=n\pi,n\in I$$

D. All of these

Answer: D

Watch Video Solution

29. If $f(x)=x^a\log x$ and f(0)=0 then the value of α for which Rolle's theorem can be applied in [0,1] is

A.-2

B. 1

 $\mathsf{C}.\,0$

Answer: D

Watch Video Solution

30.
$$y=\log\left\lfloor rac{x+\sqrt{x^2+25}}{\sqrt{x^2+25}-x}
ight
floor, findrac{dy}{dx}$$

A.
$$\dfrac{-2}{\sqrt{x^2+25}}$$

$$\text{B.}\ \frac{1}{\sqrt{x^2+25}}$$

$$\mathsf{C.}\ \frac{2}{\sqrt{x^2+25}}$$

D.
$$\frac{-1}{\sqrt{x^2+25}}$$

Answer: C

31. Let $f(x) = \tan^{-1} x$. Then, f'(x) + f''(x) is = 0, when x is equal to

A. 0

B. 1

C. I

 $\mathsf{D.}-i$

Answer: B

Watch Video Solution

32. If $x=e^t\sin t, y=e^t\cos t, ext{ then } rac{d^2y}{dx^2}$ at $t=\pi$ is

A. $2e^\pi$

$$\mathsf{B.}\,\frac{1}{2}e^{\pi}$$

C.
$$\frac{1}{2e^{\pi}}$$

D.
$$\frac{2}{e^{\pi}}$$

Answer: D

Watch Video Solution

33. Let $y=\left(rac{3^x-1}{3^x+1}
ight)\!\sin x+\log_e(1+x), x\succ 1$ then at x=0

$$, \frac{dy}{dx} =$$

A. 1

B. 0

C. -1

D.-2

Answer: A

Watch Video Solution

34. Let $f(x)=x^2|x|$ then the set of values where is three times differentiable is.

A. Infinite

B. 2

C. 3

D. None of these

Answer: A

35. Let $g(x)=egin{cases} e^{2x},&\forall x<0\ e^{-2x},&\forall x\geq 0 \end{cases}$. Then g (x|) does not satisfy the condition

A. continuous
$$\, orall x \in R$$

B. not differentiable at x=0

C. continuous $\, orall x \in R$ and non differentiable at x=0

D. g (x) is continuous and differentiable everywhere

Answer: D

36. If
$$\sqrt{x+y}-\sqrt{y-x}=c,\,\,$$
 then $\dfrac{d^2y}{dx^2}$ equals

A.
$$\frac{2}{c^2}$$

$$-\frac{2}{2}$$

$$\mathsf{C.}\,\frac{2}{c}$$

$$\text{D.}\,\frac{-2}{c}$$

Answer: A

Watch Video Solution

37. The second order derivative of $a\sin^3 t$ w.r.t, $a\cos^3 t$ at $t=rac{\pi}{4}$ is

A. 2

 $\mathsf{B.}\;\frac{1}{12a}$

C. $\frac{4\sqrt{2}}{3a}$

 $\mathrm{D.}\ \frac{3a}{4\sqrt{2}}$

Answer: C

38. If
$$\sqrt{y-\sqrt{y-\sqrt{y-.....till\infty}}}=\sqrt{x+\sqrt{x+\sqrt{x+......till\infty}}}$$

then
$$rac{dy}{dx}=$$

A.
$$\dfrac{x+y+1}{x-y+1}$$
B. $\dfrac{y-x+1}{y-x-1}$

$$\mathsf{C.}\ \frac{y-x-1}{y-x+1}$$

D. None of these

Answer: B

39. If $f(x) = \frac{\sin 4\pi \left[\pi^2 x\right]}{7 + \left[x\right]^2}$, [.] denotes ghe greatest integer

function, then f (x) is

A. continuous Aax, but f'(x) does not exist.

B. discontinuous at some x.

C. f"(x) exist Aax

D. f"(x) exist but f"(x) does not exists for some values

Answer: C

View Text Solution

40. If $y=\cos^{-1}\!\left(\frac{2x}{1+x^2}\right)$, then $\frac{dy}{dx}$ is equal to

A. $\frac{-2}{1+x^2}$ $\forall |x|>1$

C. e

D. $\frac{1}{e}$

Answer: D

C.
$$\dfrac{-2}{1+x^2}$$
 \forall $-\infty < x < \infty$

 $\operatorname{B.} \frac{1}{1+x^2} \, \forall \, -1 < x < 1$

Answer: D

41. If
$$f(x) = \ln_x(\ln x)$$
, then f'(e) =

42.
$$y = [\log_x(\log_e x)](\log_e x)$$
 then $\frac{dy}{dx}$ equals

A.
$$\frac{1}{x \log_x \log_x x}$$

$$\mathsf{B.} \; \frac{1}{x \log_e x}$$

C. 0

D. None of these

Answer: B

43. If

Watch Video Solution

 $y^{y^{y^{\cdot,\cdot,\infty}}} = \log_e(x + \log_e(x +)),$ $\frac{dy}{dx}at(x=e^2-2,y\sqrt{2})$ is

then

A.
$$\frac{\log\left(\frac{e}{2}\right)}{2\sqrt{2}(e^2-1)}$$

B.
$$\dfrac{\log 2}{2\sqrt{2}(e^2-1)}$$
C. $\dfrac{\sqrt{2}\log \frac{e}{2}}{(e^2-1)}$

D. None of these

Answer: A

View Text Solution

44. Let
$$f(x)=egin{cases} x,&x<1\ 2-x|,&1< x\leq 2 ext{then} f(x)is\ -2+3x-x^2,&x>2 \end{cases}$$

A. differentiable at x=1

B. differentiable at x=2

C. differentiable at x=1 and x=2

D. None of these

Answer: B

View Text Solution

45. For $-\frac{\pi}{2} < x < \frac{3\pi}{2}$, the vaaue of $\left\{ \tan^{-1} \frac{\cos x}{1 + \sin x} \right\}$ is equal to

A.
$$\frac{1}{2}$$

$$\mathsf{B.}-\frac{1}{2}$$

C. 1

D.
$$\frac{\sin x}{\left(1+\sin x\right)^2}$$

Answer: B

View Text Solution

46. If
$$y= an^{-1}igg(rac{\sqrt{1+x^2}-1}{x}igg)$$
 , then $y'(1)=$

A. 1/4

B. 1/2

C. -1/4

D. -1/2

Answer: A

Watch Video Solution

47. If f(x) and g(x) are twice differentiable functions on (0,3) satisfying,

 $f^{\prime\prime}(x)=g^{\prime\prime}(x), f^{\prime}(1)=4, g^{\prime}(1)=6, f(2)=3, g(2)=9,$ then f(1)-g(1) is

 $\mathsf{B.}-4$

C. 0

D.-2

Answer: B

48. Let
$$f(x)=\begin{cases} -3,&-3\leq x<0\\ x^2-3,&0< x\leq 3\end{cases} \ \text{and}\ g(x)=|f(x)|+f(|x|),$$
 then which of the following is true ?

A. at $x=0,\,g(x)$ is continuous as well as differentiable

B. $atx=\sqrt{3},\,g(x)$ is continuous but not differentiable

C. $atx=2,\,g(x)$ is neither continuous nor differentiable

D. None of these

Answer: A::B

View Text Solution

49. Which of the following functions is differentiable at x = 0?

A. $\cos|x| + |x|$

 $|\mathsf{B}.\cos|x| - |x|$

 $\mathsf{C}.\sin\lvert x
vert + \lvert x
vert$

 $\mathsf{D}.\sin|x|-|x|$

Answer: A::B::C

Watch Video Solution

50. For the function $f(x)=egin{cases} \frac{x}{1+e^{1/x}},&x
eq 0 \\ 0,&x=0 \end{cases}$, the derivative from the right, $f'(0^+)$ = ... and the derivative from the left, $f'(0^-)$ =

A.
$$\left(f'\left(0^+\right)=1\right)$$

B.
$$f'(0^+) = 0$$

$$C. f'(0^-) = 1$$

D.
$$f'(0^-) = 0$$

Answer: A::C

51. Let f(x) be twice differentiable functin such that $f^{\prime\prime\prime}(x)>0$ in [0,1]. Then

A.
$$f(0) + f(1) = 2f(c), < c < 1$$

B.
$$f(x)+f(1)=2figg(rac{1}{2}igg)$$

C.
$$f(0)+f(1)>2figg(rac{1}{2}igg)$$

D.
$$f(0)+f(1)<2f\Bigl(rac{1}{2}\Bigr)$$

Answer: B::C

View Text Solution

52. Let $f(x) = \min \left\{ x, x^2
ight\}$, for every $x \in R$. Then

A. f (x) is continuous for all x

B. f (x) is diffentiable for all x

C. f'(x) = 1 for x > 1

D. f (x) is not differentiable at two values of x

Answer: B

Watch Video Solution

53. The function f (x) = 1+ $|\sin x|$ is

A. discontinuous

B. continuous everywhere

C. differentiable everywhere

D. not differentiable at infinite number of points

Answer: B

54. The differentiation of
$$\sin^3 x + \cos^3 x$$
 with respect to $\sin x + \cos x$ is

A.
$$\sin x \cos x$$

$$\mathsf{B.} - 3\sin x \cos x$$

$$\mathsf{C.} - \sin x \cos x$$

D.
$$3\sin^2 x \cos^2 x$$

Answer: B

A.
$$\tan^2 \theta$$

B. $|\sec \theta|$

C. $\sec^2 \theta$

D. None of these

Answer: B

Watch Video Solution

Wb Jee Previous Years Questions

1. Let
$$f(x) = \left\{ egin{array}{ll} x^2 - 3x + 2, & x < 2 \ x^3 - 6x^2 + 9x + 2, & x \geq 2 \end{array}
ight.$$

Then

A. $\lim_{x \to 2} f(x)$ does not exist

B. f is continuous at x=2

C. f is continuous but not differentiable at x=2

D. f is continuous and differentiable at x=2

Answer: C

View Text Solution

2. Let $f(x) = a \sin \lvert x \rvert + b e^{\lvert x \rvert}$ is differentiable when

 $\operatorname{A.}3a+b=0$

B.3a - b = 0

C. a + b = 0

D. a - b = 0

Answer: C

3. Let R be the set of all real number and $f{:}[-1,1] o R$ is difined by

$$f(x)=\left\{egin{array}{ll} x\sinrac{1}{x}, & x
eq 0\ 0, & x=0 \end{array}
ight.$$
 Then

A. ${\sf f}$ satisfgies the conditions of Rolle's theorem on $[\,-1,1]$

B.f satifsies the conditions of Lagrange's Mean Value

Theorem on [-1,1]

C. f satisfies the conditions of Rolle's theorem on [0, 1]

D.f satisfies the conditions of Lagrange's Mean Value

Theorem on [0,]

Answer: D

view text solution

4. Suppose that f(x) is a differentiable function such that f'(x) is continuous, f'(0)=1 and f''(0) does not exist. Let g(x)=xf'(x), Then

A. g'(0) does not exist

$$B. g'(0) = 0$$

$$C. g'(0) = 1$$

D.
$$q'(0) = 2$$

Answer: C

5. For all real values of
$$a_0, a_1, a_2, a_3$$
 satisfying a_1, a_2, a_3

$$a_0+rac{a_1}{2}+rac{a_2}{3}+rac{a_3}{4}=0,$$
 the equation $a_0+a_1x+a_2x^2+a_3x^3=0$ has a real root in the interval

B.
$$[-1, 0]$$

D.
$$[-2, -1]$$

Answer: A

View Text Solution

6. If
$$y=(1+x)\big(1+x^2\big)\big(1+x^4\big)\big(1+x^{2n}\big),$$
 then find $\dfrac{dy}{dx}atx=0.$

- A. 0
- B. -1`
- C. 1
- D. 2

Answer: C

- 7. If y=f(x) is an odd differentiable function defined on $(\,-\infty,\infty)$ such that $f'(3)=\,-\,2thenf'(\,-\,3)$ equals -
 - A. 0

 - B. 1
 - C. 2

Answer: C

Watch Video Solution

8. If
$$f(x)= an^{-1}\left[rac{\log\left(rac{e}{x^2}
ight)}{\log(ex^2)}
ight]+ an^{-1}\left[rac{3+2\log x}{1-6\log x}
ight]$$

then the vlaue of f''(x) is

A. x^2

B. x

C. 1

D. 0

Answer: D

9. Consider the non-constant differentiable function f of one

variable which obeys the relation

$$rac{f(x)}{f(y)}=f(x-y).$$
 $Iff'(0)=p$ and $f'(5)=q,$ then

$$f'(-5)$$
 is

A.
$$\frac{p^2}{q}$$

$$\mathsf{B.}\,\frac{q}{p}$$

$$\operatorname{C.}\frac{p}{q}$$

D. q

Answer: A

10. if $f(x) = \log_5 \log_3 x$ then f'(e) is equal to

A. $e \log_e 5$

B. $e \log_e 3$

C. $\frac{1}{e \log_e 5}$

D. $\frac{1}{e \log_e 3}$

Answer: C

Watch Video Solution

where x is a real variable. Then $rac{dH}{dx}atx=0$ is

Let $F(x) = e^x$, $G(x) = e^{-x}$ and H(x) = G(F(x)),

A. 1

B. - 1

$$\mathsf{C.} - \frac{1}{e}$$

D.-e

Answer: C

Watch Video Solution

12. IF
$$y=e^{m\sin^{-1}x}igg)$$
 and $ig(1-x^2ig)rac{d^2y}{dx^2}-xrac{dy}{dx}-ky=0,$

then k is equal to

A. m^2

B. 2

 $D.-m^2$

c.c - 1

Answer: A

13. Let
$$f(x)=\left\{egin{array}{ll} rac{x^p}{\left(\sin x
ight)^q},&0< x\leq rac{\pi}{2}\ 0,&x=0 \end{array}
ight., (p,q\in R).$$
 Then

Lagrange's mean value theorem is applicable to f(x) in closed interval [0,x],

A. for all p,q

B. only when p > q

C. only when p < q

D. for no alue of p,q

Answer: B

14. For all twice differentiable functions $f \colon R o R$, with

$$f(0) = f(1) = f'(0) = 0$$

A.
$$f'(0) = 0$$

B. f'(c) =0 for some $c \in R$

C. if $c \neq 0$, then $f'(c) \neq 0$

D. f'(x)>0 for some x
eq 0

Answer: B

Watch Video Solution

15. Let $f_1(x)=e^x, f_2(x)=e^{f_1(x)},.....,f_{n+1}(x)=e^{f_n(x)}$ for all $n\geq 1$. Then for any fixed n, $\frac{d}{dx}f_n(x)$ is

A. $f_n(x)$

 $\mathsf{B}.\, f_n(x) f_{n-1}(x)$

C. $f_n(x)f_{n-1}(x),\ldots,f_1(x)$

D. $f_n(x) \dots F_1(x) e^x$

Answer: C

Watch Video Solution

16. Let $f\colon [a,b] o R$ be differentiable on $[a,b]\&k\in R$. Let f(a)=0=f(b). Also let J(x)=f'(x)+kf(x). Then

A. J(x)>0 for all $x\in [a,b]$

B. J(x)>0 for all $x\in [a,b]$

C. J(x)=0haa at least one root in (a,b)

D. J(x)=0 through (a,b)

Answer: C

View Text Solution

17. Let f(x)>0 for all x and f'(x) exists for all x. If f is the inverse functin of h and $h'(x)=\frac{1}{1+\log x}.$ Then f'(x) will be

A.
$$1 + \log(f(x))$$

B.
$$1 + f(x)$$

$$\mathsf{C.}\,1 - \log(f(x))$$

$$D.\log f(x)$$

Answer: A

18. Applying Largrange's mean value theorem for a suitable

function f(x) in [0, h], we have

$$f(h)=f(0)+hf'(\theta h), 0<\theta<1.$$

Then for $f(x)=\cos x, ext{ the vlaue of } \lim_{h o 0^+} heta$ is

A. 1

B. 0

 $\mathsf{C}.\,1/2$

D. 1/3

Answer: B

19. The number of points at which the function $f(x)=\max{\{a-x,a+x,b\}}, -\infty < x < \infty, 0 < a < b$ cannot be differentiable is :

A. 0

B. 1

C. 2

D. 3

Answer: B

Watch Video Solution

20. Let f be arry continuously differentiable function on [a,b] and twice differentiable on (a,b) such that

 $f(a)=f(a)=0 \,\, \mathrm{and} \,\, f(b)=0.$ Then

A. $f^{\prime\prime}(a)=0$

B. f'(x)=0 for some $x\in(a,b)$

C. f''(x) = 0 for some $x \in (a,b)$

D. f' '' (x)=0 for some $x\in(a,b)$

Answer: B::C

21. If $f(x) = x^n, n$ being a non-negative integer,then the values of n for which

f'(lpha+eta)=f'(lpha)+f'(eta)foralllpha,eta>0 is

A. 1

B. 2

C. 0

D. 5

Answer: B::C

Watch Video Solution

22. Let $f\colon [1,3] o R$ be a continuous function that is differentiable in (1,3) and $f'(x) = \left|f(x)\right|^2 + 4$ for all $x \in (1,3)$. Then,

A. f(3) - f(1) = 5 is true

B. f(3) - f(1) = 5 is false

C. f(3) - f(1) = 7 is false

D. f(3)-f(1)<0 only at one point of (1,3)

Answer: B::C

