MATHS

BOOKS - MTG WBJEE MATHS (HINGLISH)

MODEL TEST PAPER 1

Category 1 Single Option Correct Type

1. The principal value of
$$\sin^{-1} \left\{ \tan \left(\frac{-5\pi}{4} \right) \right\}$$
 is

A.
$$\frac{\pi}{4}$$

$$B.-\frac{\pi}{4}$$

C.
$$\frac{\pi}{2}$$

$$D.-\frac{\pi}{2}$$

Answer: D

Watch Video Solution

- **2.** The coefficient of x^7 in $\frac{1-x}{\left(1+x\right)^2}$ is
 - A. 12
 - B. 15
 - $\mathsf{C.}-15$
 - D. none of these

Answer: C

3. Let $f\colon N o R$ be such that f(1)=1 and f(1)+2f(2)+3f(3)+nf(n), for all $n\in N, n\geq 2$, where N is the set of natural numbers and R is the set of real numbers. Then the value of f(500) is

B. 500

C. 1/500

D. 1/1000

Answer: D

Watch Video Solution

4. If $I_1=\int_0^{\pi/2}x\sin xdx$ and $I_2=\int_0^{\pi/2}x\cos xdx$,then which one of the following is true ?

A.
$$I_1=I_2$$

$$\mathtt{B.}\,I_1+I_2=0$$

C.
$$I_1=rac{\pi}{2}I_2$$

D.
$$I_1+O_2=rac{\pi}{2}$$

Answer: D

Watch Video Solution

5. If the ratio of the sums of m and n terms of A.P. is $m^2:n^2$, then the ratio of its m^{th} and n^{th} terms is given by

A.
$$(2m+1)$$
: $(2n+1)$

B.
$$(2m-1)$$
: $(2n-1)$

$$\mathsf{C}.\,m:n$$

D.
$$m - 1$$
: $n - 1$

Answer: B

Watch Video Solution

6. The domain of definition of f(x) = $\frac{\log_2(x+3)}{x^2+3x+2}$

A.
$$R = \{-1, -2\}$$

B.
$$R - \{-1, -2, 0\}$$

C.
$$(-3, -1) \cup (-1, \infty)$$

D.
$$(-3,00) - \{-1, -2\}$$

Answer: D

7. There are 8 lamps in a hall. Each one of them can be switched on independently. The number of ways in which the hall can be illuminated is

A. 8!

B. 16

C. 255

D. 2^{8}

Answer: C

Watch Video Solution

8. If $A = egin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then A^{100} is equal to

 $\mathsf{A.}\ 100A$

B. $2^{99}A$

 $C. 2^{100} A$

D. 99A

Answer: B

Watch Video Solution

9. If
$$y=rac{1}{1+x+x^2}$$
 , then $rac{dy}{dx}=$

A.
$$y^2(1+2x)$$

$$\mathsf{B.}\,\frac{-(1+2x)}{y^2}$$

$$\mathsf{C.} - y^2(1+2x)$$

D.
$$\left(\frac{1+2x}{y^2}\right)$$

Answer: C

10. Numbers 1, 2, 3,, $2n(n \in N)$ are printed on 2n cards. The probability of drawing a number r is proportional to r. Then the probability of drawing an even number in one draw is

A.
$$\frac{n+1}{n+3}$$

$$\mathsf{B.}\;\frac{n+1}{n+3}$$

c.
$$\frac{1}{2}$$

D.
$$\frac{n+1}{2n+1}$$

Answer: D

View Text Solution

- A. $2\log 2 + 1$
- $B.\log 2 1$
- $\mathsf{C}.\log 2 + 1$
- D. $2\log 2 1$

Answer: D

- 12. We define a binary relationon \sim on the set of all 3×3 real matrices as $A{\sim}B,$ if and only if there exist invertible matrices
- $P \ {
 m and} \ Q$ suchthat $B-PAO^{-1}.$ The binary relation ~ is
 - A. neither reflexive nor symmetric
 - B. reflexive and symmetric but not reflexive
 - C. an equivalence relation

D. an equivalence realation

Answer: D

Watch Video Solution

13. If P(x) is a polynomial of degree less than or equal to 2 and S is the set of all such polynomials so that P(0) = 0, P(1) = 1, and $P'(x) > 0 \, \forall x \in [0,1]$, then

A.
$$S=\phi$$

B.
$$S=ax+(1-a)x^2\,orall a\in(0,2)$$

C.
$$S=ax+(1-a)x^2\,orall a\in(0,\infty)$$

D.
$$S=ax(1-a)x^2\,orall a\in(0,1)$$

Answer: B

View Text Solution

14. The sum of the series $\frac{1}{2}x^2 + \frac{2}{3}x^3 + \frac{3}{4}x^4 + \frac{4}{5}x^5 + ...$ is :

A.
$$\frac{x}{1-x} + \log(1-x)$$

$$\mathsf{B.} \; \frac{x}{1+x} + \log(1+x)$$

$$\mathsf{C.} - \frac{x}{1+x} + \log(1+x)$$

D. none of these

Answer: A

Watch Video Solution

15. If $A=\begin{bmatrix}1&0&0\\0&1&0\\a&b&1\end{bmatrix}$ and I is the unit matrix of order 3, then

 $A^2+2A^4+4A^6$ is equal to

- A. $7A^{8}$
- $\mathsf{B.}\,7A^7$
- $\mathsf{C.}\,8I$
- $\mathsf{D.}\,6I$

Answer: A

- **16.** Cofficient of x^4 in the expansion of $\dfrac{1-3x+x^2}{e^x}$ is
 - A. $\frac{25}{24}$
 - B. $\frac{24}{25}$
 - $\mathsf{C.}\ \frac{4}{25}$
 - $\mathsf{D.}\,\frac{5}{24}$

Answer: A

Watch Video Solution

17. If
$$A \begin{bmatrix} 1 & 0 & 0 \\ x & 1 & 0 \\ x & x & 1 \end{bmatrix}$$
 and $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $A^3 - 3A^2 + 3A$

is equal to

A. 31

B. I

 $\mathsf{C}.-I$

D.-2I

Answer: B

18. The sum of the series $\frac{1}{12} - \frac{1}{23} + \frac{1}{34} - \frac{1}{45} + \dots$ is

A.
$$\log(2e)$$

 $B.\log(4e)$

$$\mathsf{C.}\log\!\left(rac{2}{e}
ight)$$

 $D.\log\left(\frac{4}{e}\right)$

Answer: D

Watch Video Solution

19.
$$\begin{vmatrix} \sin \alpha & \cos \alpha & \sin(\alpha + \delta) \\ \sin \beta & \cos \beta & \sin(\beta + \delta) \\ \sin \gamma & \cos \gamma & \sin(\gamma + \delta) \end{vmatrix} =$$

A. 0

B. 1

 $\mathsf{C.}\,1+\sinlpha\sineta\sin\gamma$

D.
$$1 - (\sin \alpha - \sin \beta)(\sin \beta - \sin \gamma)(\sin \gamma - \sin \alpha)$$

Answer: A

Watch Video Solution

20. The general solution of $\sin x - \cos x = \sqrt{2}$, for any integer n is

A.
$$2n\frac{\pi_{3\pi}}{4}$$

B. $n\pi$

C. $(2n+1)\pi$

D. $2n\pi$

Answer: A

21. If n is a natural number, then

A.
$$1^2 + 2^2 + \ldots + n^2 < \frac{n^3}{3}$$

B.
$$1^2 + 2^2 + \ldots + n^2 = \frac{n^3}{3}$$

C.
$$1^2 + 2^2 + \ldots + n^2 > n^3$$

D.
$$1^2 + 2^3 + \ldots + n^2 > \frac{n^3}{3}$$

Answer: D

View Text Solution

22. IF * is the operation defined by $a*b=a^b$ for $a,b\in N$, then

(2*3)*2 is equal to

A. 81

B. 512

C. 216

D. 64

Answer: D

Watch Video Solution

23. The sum of series $\frac{2}{3!}+\frac{4}{5!}+\frac{6}{7!}+\ldots\ldots \infty$ is :

A. e

B. e^{-1}

 $\mathsf{C.}\,2e$

D. $2e^{-1}$

Answer: B

24. If A and B are mutually exclusive events such that P(A)=0.25, P(B)=0.4, then $Pig(A^C\cap B^Cig)$ is equal to

- A. 0.45
- B. 0.55
- C. 0.9
- D. 0.35

Answer: D

Watch Video Solution

25. Five horses are in race. Mr. X selected two of horses at random and bets on them. The probability that Mr. X selected the winning horse is

A.
$$\frac{3}{5}$$

$$\mathsf{B.}\;\frac{1}{5}$$

C.
$$\frac{2}{5}$$
D. $\frac{4}{5}$

Answer: C

26. If
$$\omega$$
 is an imaginary cube root of unity, then the value of

$$egin{bmatrix} 1 & \omega^2 & 1 - \omega^4 \ \omega & 1 & 1 + \omega^5 \ 1 & \omega & \omega^2 \end{bmatrix}$$
 is

$$A.-4$$

B.
$$\omega^2-4$$

$$\mathsf{C}.\,\omega^2$$

Answer: B

Watch Video Solution

27. The matrix product satisfies [5,6,2]. $A^T=[4,8,1,7,8]$, where A^T denotes the transpose of the matrix A. Then the order of the matrix A equal to

- A. 1×2
- $\text{B.}\,5\times1$
- $\text{C.}~3\times5$
- D. 5 imes 3

Answer: D

28. Solution set for the inequality $\cos^{-1}x < \sin^{-1}x$

A.
$$[-1, 1]$$

B.
$$\left[\frac{1}{\sqrt{2}},1\right]$$

 $\mathsf{C}.\,[0,\,1]$

D.
$$\left(\frac{1}{\sqrt{2}},1\right)$$

Answer: D

Watch Video Solution

29. n^3+2n divisible by

A. 15

B. 3

C. 2

D. 6

Answer: B

Watch Video Solution

30.
$$\cot^{-1} 9 + \frac{\cos^{-1} \sqrt{41}}{4} =$$

A. $\pi/2$

B. $\pi/4$

 $\mathsf{C}.\,\pi/3$

D. π

Answer: B

31. The value of
$$\int_0^4 |x-1| dx$$
 is

A.
$$\frac{5}{2}$$

Answer: B

Watch Video Solution

32. The sum of the series $1+rac{3^2}{2!}+rac{3^4}{4!}+rac{3^6}{6!}+\ldots$ to ∞ is

A.
$$e^{\,-3}$$

$$B.e^3$$

C.
$$\frac{1}{2}(e^3 - e^{-3})$$

D.
$$\frac{1}{2} (e^3 + e^{-3})$$

Answer: D

Watch Video Solution

33. Find the which function does not obey mean value theorem in

A.
$$f(x) = |x|$$

$$B. f(x) = x|x|$$

C.
$$f(x) = \left\{ egin{array}{ll} rac{\sin x}{x}, & x
eq 0 \ 1, & x = 0 \end{array}
ight.$$

D. none of these

Watch Video Solution

34. If the events A and B are independent if $P(\overline{A})=rac{2}{3}$ and $P(\overline{B})=rac{2}{7}$, then $P(A\cap B)$ is equal to

A.
$$\frac{4}{21}$$

$$\mathsf{B.}\,\frac{3}{21}$$

$$\mathsf{C.}\;\frac{5}{21}$$

D.
$$\frac{1}{21}$$

Answer: C

35. Find the term independent of x in the expansion of $\left(1+x+2x^3\right)\left[\left(3x^2/2\right)-\left(1/3\right)\right]^9$

A.
$$\frac{15}{54}$$

$$\mathsf{B.}\;\frac{11}{54}$$

c.
$$\frac{12}{54}$$

D.
$$\frac{17}{54}$$

Answer: D

Watch Video Solution

36. A sphere increases its volume at the rate of $\pi cm^3/\mathrm{sec}$. The rate at which its surface area increases when the radius is 1 cm is

A. $2\pi sq.\ cm/s$

B.
$$\pi sq.\ cm/s$$

C.
$$\frac{3\pi}{2}$$
 $sq.$ cm/s

D.
$$\frac{\pi}{2}$$
 $sq.~cm/s$

Answer: A

Watch Video Solution

37. If
$$P=egin{bmatrix}1&\alpha&3\\1&3&3\\2&4&4\end{bmatrix}$$
 is the adjoint of 3×3 matrix A and $|A|=4$, then $\alpha=$

A. 11

B. 5

C. 0

D. 4

Answer: A

Watch Video Solution

38. If $I_1=\int_0^{\pi/4}\sin^2xdx$ and $I_2=\int_0^{\pi/4}\cos^2xdx$, then

A.
$$I_1=I_2$$

B.
$$I_1 < I_2$$

C.
$$I_1 > I_2$$

D.
$$I_2 = I_1 + \pi/4$$

Answer: B

39. If $\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is to be the square root of two-rowed unit

matrix, then $\alpha, \beta \ \ {
m and} \ \ \gamma$ should satisfy the relation

A.
$$1+lpha^2+eta\gamma=0$$

B.
$$1-lpha^2-eta\gamma=0$$

$$\mathsf{C.}\,1-\alpha^2+\beta\gamma=0$$

D.
$$1 + alppha^2 - eta \gamma = 0$$

Answer: B

Watch Video Solution

40. If $\sqrt{y} = \cos^{-1} x$, then it satisfies the differential equation

$$(1-x^2)rac{d^2y}{dx^2}-xrac{dy}{dx}=c$$
 , where c is equal to

A. 0

B. 3

C. 1

D. 2

Answer: D

Watch Video Solution

41. If $P=egin{bmatrix}2&-2&-4\-1&3&4\1&-2&-3\end{bmatrix}$, then P^5 equals

A.P

B. 2P

 $\mathsf{C}.-P$

D.-2P

Answer: A

42. If m and n denote respectively the order and degree of a differential equation

$$\left[a+\left(rac{dy}{dx}
ight)^6
ight]^{7/5}=brac{d^2y}{dx^2}$$
 then the value of (m, n) will be

A.
$$(1, 7)$$

Answer: C

43. If α, β, γ are cube roots of unity, then the value of

$$\left|egin{array}{cccc} e^lpha & e^{2lpha} & \left(e^{3lpha}-1
ight) \ e^eta & e^{2eta} & \left(e^{3eta}-1
ight) \ e^\gamma & e^{2\gamma} & \left(e^{3\gamma}-1
ight) \end{array}
ight|=$$

A.-2

B. - 1

C. 0

D. 1

Answer: C

Watch Video Solution

44. The general solution of differential equation

$$\frac{d^2y}{dx^2} = e^{2x} + e^{-x}$$
 is

A.
$$4e^{2x} + e^{-x} + c_1 x + c_2$$

B.
$$\frac{1}{4}e^{2x} - e^{-x} + c$$

C.
$$rac{1}{4}e^{2x} + e^{-x} + c_1 x + c_2$$

D.
$$rac{1}{4}e^{2x} - e^{-x} + c_1 x + c_2$$

Answer: C

Watch Video Solution

45. Solution of the differential equation xdy - ydx = 0represents

A. parabola

B. circle

C. hyperbola

D. straight line

Answer: D

Watch Video Solution

46. Five dice are tossed. What is the probability that the five numbers shown will be different?

- $\text{A.}\ \frac{5}{54}$
- B. $\frac{5}{18}$
- $\mathsf{C.}\,\frac{5}{27}$
- D. $\frac{8}{81}$

Answer: A

47. IF \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are the position vectors of the vertices of an equilateral triangle whose orthocentre is at the origin, then

A.
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$

$$\operatorname{B.}\overrightarrow{a}^2 = \overrightarrow{b}^2 + \overrightarrow{c}^2$$

$$\mathsf{C.} \, \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c}$$

D. none of these

Answer: A

Watch Video Solution

48. If
$$\int \frac{dx}{\cos 2x + 3\sin^2 x} = \frac{1}{a} \tan^{-1}(b \tan x) + c$$
, then $ab = 1$

A. 0

B. 1

C. 2

D. 3

Answer: C

Watch Video Solution

49. f(x) = x + |x| is continuous for

A.
$$x\in (\,-\infty,\infty)$$

B.
$$x\in (\,-\infty,\infty)-\{0\}$$

 $\mathsf{C.\,only}\,x>0$

D. no value of x

Answer: A

50. Let P be the set of all non - singular matrices of order 3 over R and Q be the set of all orthogonal matrices of order 3 over R. Then

A. P is proper subset of Q

B. Neither P is proper subset of Q nor Q is proper subset of P

C. $P\cap Q=\phi$ the void set

D. Q is proper subset of P

Answer: B

Watch Video Solution

Category 2 Single Option Correct Type

1. Let the coefficients of powers of in the 2^{nd} , 3^{rd} and 4^{th} terms in the expansion of $(1+x)^n$, where n is a positive integer, be in arithmetic progression. The sum of the coefficients of odd powers of x in the expansion is

- A. 32
- B. 64
- C. 128
- D. 256

Answer: B

2. if
$$\begin{bmatrix} \cos \frac{2\pi}{3} & -\sin \frac{2\pi}{3} \\ \sin \frac{2\pi}{3} & \cos \frac{2\pi}{3} \end{bmatrix}^k = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Then the least value of k equals (k
eq 0)

- **A.** 1
- B. 2
- C. -1
- D. 3

Answer: D

View Text Solution

3. If
$$\int_0^y e^{-t^2}dt + \int_0^{x^2} \sin^2t dt = 0$$
, then $\frac{dy}{dx}$ at $x=y=1$ is

 $A. \sin^{-1}$

$$\mathsf{B.}-e\sin^2 1$$

$$C. -2e\sin^2 1$$

D. none of these

Answer: C

Watch Video Solution

4. If the roots of $ax^2 + bx + c = 0$ are of the form

$$\frac{m}{m-1}$$
 and $\frac{m+1}{m}$, then the value of $(a+b+c)^2$ is

A.
$$b^2-2ac$$

$$B.2b^2-ac$$

$$\mathsf{C.}\,b^2-4ac$$

D.
$$2ig(b^2-2acig)$$

Answer: C

Watch Video Solution

- **5.** $3^{\frac{1}{9}}.9^{\frac{1}{27}}.27^{\frac{1}{81}}.81^{\frac{1}{243}}....\infty =$
 - A. $\sqrt{3}$
 - B. 1
 - c. $\frac{1}{3}$

D. none of these

Answer: D

$$x_1+2x_2+x_3=3, 2x_1+3x_2+x_3=3 \, ext{ and } \, 3x_1+5x_2+2x_3=1$$
 , has

The system of linear equations

B. exactly three solutions

Answer: D

6.

7. Let
$$f(x)=\left\{x^2\Big|(\cos)rac{\pi}{x}\Big|, x
eq 0 ext{ and } 0, x=0, x\in\mathbb{R}, ext{ then } f
ight.$$
 is

- A. differentiable at both x = 0 and x = 2
- B. differentiable at x = 0 but not differentiable at x = 2
- C. not differentiable at x = 0, but differentiable at x = 2
- D. differentiable at neither x = 0 nor x = 2.

Answer: B

- **8.** An open cylindrical can has to be made with $100m^2$ of tin. If its volume is maximum, then the ratio of its base radius and the height is
 - A. 1:1
 - B.2:1
 - C. 1:3

D.
$$\sqrt{2}:1$$

Answer: A

Watch Video Solution

- **9.** The sum of series $\frac{7}{11}+\frac{77}{11^2}+\frac{777}{11^3}+\frac{7777}{11^4}+\ldots...\infty$ is
 - $\mathsf{A.}\ \frac{69}{77}$
 - $\mathsf{B.}\;\frac{77}{11}$
 - $\mathsf{C.}\ \frac{70}{99}$
 - D. $\frac{77}{10}$

Answer: D

10.

The function
$$f(x) = rac{\lambda \sin x + 6 \cos x}{2 \sin x + 3 \cos x}$$
 reasing if

monotonically

A.
$$\lambda > 1$$

B.
$$\lambda > 4$$

$$\mathsf{C}.\,\lambda < 1$$

D.
$$\lambda < 4$$

Answer: B

Watch Video Solution

11. The value of $\displaystyle \int_{1}^{e} \dfrac{dx}{6x(\log x)^{2} + 7x(\log x) + 2x} =$

A.
$$\log_e\left(\frac{15}{2}\right)$$

$$\mathsf{B.}\log_e\!\left(rac{6}{5}
ight)$$

$$\mathsf{C.}\log_e\!\left(rac{3}{10}
ight)$$

D.
$$\frac{1}{5}\log_e\left(\frac{8}{3}\right)$$

Answer: B

Watch Video Solution

12. An object starts from rest from the point A to rest at point B on the same straight line at a distance d. It moves over the first part of the distance with an acceleration $\alpha m/s^2$ and for the remainder the retardation $\beta m/s^2$. Find the time taken to complete the journey.

A.
$$2s \left(rac{1}{a} + rac{1}{r}
ight)$$

B.
$$\frac{2s}{\frac{1}{a} + \frac{1}{r}}$$

C.
$$\sqrt{2s\Big(rac{1}{a}+rac{1}{r}\Big)}$$

D.
$$\sqrt{2s(a+r)}$$

Answer: C

Watch Video Solution

13. Let S_K be the sum of an infinte G.P. series whose first term is K and common ratio is $\frac{K}{K+1}(K>0)$. Then the value of

$$\sum_{K=1}^{\infty} rac{{(\,-\,1)}^K}{S_K}$$
 is equal to

- A. $\log_e 4$
- B. $\log_e 2 1$
- $\mathsf{C.}\log_e 2 + 1$
- D. $1 \log_e 4$

Answer: D

....

14.
$$\frac{d}{dx} \left[\sin^2 \cot^{-1} \sqrt{\frac{1-x}{1+x}} \right]$$
 is

A.
$$-\frac{1}{2}$$

$$B.-1$$

D.
$$\frac{1}{2}$$

Answer: D

Watch Video Solution

statements is always true?

A.
$$P(A'/B) = P(A/B)$$

15. Let A and B any two events. Which one of the following

 $\mathtt{B.}\,P(A/B)=P(B'/A)$

c. P(A'/B) = 1 - P(A/B)

 $\mathsf{D}.\,P(A^{\,\prime}/B)=1-P(A/B^{\,\prime})$

Answer: C

Category 3 One Or More Than One Option Correct Type

1. If
$$\int \!\! 4(3-2x)^{-2} \left(\frac{3-2x}{3+2x}\right)^{\frac{1}{3}} \! dx = \frac{3}{\alpha} \left(\frac{3+2x}{3-2x}\right)^{\frac{\beta}{\gamma}} + c$$
 (eta and γ are prime nos.), then

A. α, β, γ are in G.P.

B. $lpha,eta,\gamma$ are in H.P.

C. $\alpha a, \beta, \gamma$ are in A.P.

D.
$$\alpha=\beta\gamma$$

Answer: D

Watch Video Solution

2. The function
$$f(x)=\left\{egin{array}{ll} |x-3|,&x\geq 1\ \left(rac{x^2}{4}
ight)-\left(rac{3x}{2}
ight)+rac{13}{4},&x< 1 \end{array}
ight.$$
 is

A. continuous at x = 1

B. differentiable at x = 1

C. continuous at x = 3

D. differentiable at x = 3

Answer: A::B::C

3. The area of the region bounded by the curve $y=e^x$ and lines x=0 and y=e is

A.
$$e-1$$

$$\mathsf{B.} \int_1^e \ln(e+1-y) dy$$

$$\mathsf{C.}\,e - \int_0^1 e^x dx$$

D.
$$\int_{1}^{x} \ln y dy$$

Answer: B::C

Watch Video Solution

4. If A and B are independent events such that

$$0 < P(A) < q, 0 < P(B) < 1$$
 then

A. A, B are mutually exclusive

B. A and B' are independent

C. A' and B' are independent

 $\operatorname{D.} P(A \mid B)_P(A ' \mid B) = 1$

Answer: B::C::D

5. If
$$A^2-3A+2I=0$$
, then A =

A.
$$I$$

 $\mathsf{B}.\,2I$

$$\mathsf{C.}\begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$$

D. $\begin{bmatrix} 3 & 1 \\ -2 & 0 \end{bmatrix}$

Answer: A::B::C::D

6.
$$\frac{\tan \theta + \sec \theta - 1}{\tan \theta - \sec \theta + 1}$$

A.
$$\frac{1-\sin\theta}{\cos\theta}$$

B.
$$\frac{1+\sin\theta}{\cos\theta}$$

C.
$$\frac{\cos \theta}{1 - \sin \theta}$$
D. $\frac{\cos \theta}{1 + \sin \theta}$

Answer: B::C

7.
$$\int \frac{\left(\frac{1}{x}+\frac{1}{x^2}\right)(x-1)dx}{\left(\frac{1}{x^4}+\frac{1}{x^2}\right)\sqrt{(x^4-x^3+x^2)(x^4+x^3+x^2)}}=\sec^{-1}\{f(x)\}+c$$

, then

A. Maximum value of $f(x) = \, - \, 2$

B. Minimum value of f(x)=2

C. f(0) is not defined

D. $\frac{f(\pi)}{< f(e)}$

Answer: A::B::C

View Text Solution

- **8.** If z is a point on the circle $|z-1|=1,\,$ then arg z =
 - A. arg|z-1|
 - $\mathtt{B.}\ \frac{1}{2}arg(z-1)$
 - C. $arg(z^2-z)$

D.
$$rac{1}{3}argig(z^2-zig)$$

Answer: B::D

Watch Video Solution

- **9.** For which of the following values of m is the area of the regions bounded by the curve $y=x-x^2$ and the line y=mxequal $\frac{9}{2}$? -4 (b) -2 (c) 2 (d) 4

 - A.-4
 - B.-2
 - C. 2
 - D. 4

Answer: B::D

10. $^{2n}P_n$ is equal to

A.
$$(n+1)(n+2)\dots(2n)$$

$$\mathsf{B.}\, 2^n [1 \cdot 3 \cdot 5 \ldots (2n-1)]$$

$$\mathsf{C}.\,(2)\cdot(6)\cdot(10)...(4n-2)$$

D.
$$n!(^{2n}C_n)$$

Answer: A::B::C::D

