

MATHS

BOOKS - MTG WBJEE MATHS (HINGLISH)

MODEL TEST PAPER 2

Category 1 Single Option Correct Type

1. If both roots of $x^2-2ax+a^2-1=0$ lies in $(\,-2,1)$ then [a], where

[.] denotes greatest integral function is

A. -1

B. 0

C. 1

D. 2

Answer: A

2. Let R be a relation in N defined by $R = \{(x, y) : 2x + y = 8\}$, then range of R is

A. $\{1, 2, 3\}$

 $B. \{2, 4, 6\}$

C. $\{1, 2, 3, 4, 6\}$

D. none of these

Answer: B

Watch Video Solution

3. if $f(x) = rac{\sin(4\pi[x])}{1+{[x]}^2}$,where [x] is the greatest integer less than or

equal to x,

A. f(x) is not differentiable

 ${\sf B}.\,f'(x)>0$

 $\mathsf{C}.\,f'(x)=0\,\forall x$

D. none of these

Answer: C

4. If
$$z
eq 0, \int_{0}^{100} arg(\,-\,|z|) dx$$
 equals

A. 0

B. not defined

C. 100

D. 100π

Answer: D

5. The sum of the series

$$\frac{1}{1!(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots + \frac{1}{(n-1)!1!} \text{ is = (A)}$$

$$\frac{1}{n!2^n} \text{ (B) } \frac{2^n}{n}! \text{ (C) } \frac{2^{n-1}}{n}! \text{ (D) } \frac{1}{n!2^{n-1}}$$
A. $\frac{2^{n-1}}{(n-1)}$
B. $\frac{2^{n-1}}{n!}$
C. $\frac{2^n}{(n-1)!}$
D. $\frac{2^n}{n!}$

Answer: B

Watch Video Solution

6. In a 'multiple choice question' test there are eight questions. Each question has four alternative of which only one is correct. IF a candidate answers all the questions by choosing one answer for each question, then the number of ways to get exactly 4 correct answer is

A. 70

B. 2835

C. 5670

D. none of these

Answer: C

Watch Video Solution

7. There are two bosy B_1 and B_2 . B_1 and n_1 different toys and B_2 and n_2 different toys. Find the number of ways in which B_1 and B_2 can exchange their toys in such a way that after exchanging they still have same number of toys but not the same set.

A. ${}^{m+n}C_m$ B. ${}^{m+1}C_{m-1}$ C. ${}^{m+n}P_n$

D. none of these

Answer: B

8. If the roots of the equation $x^2 + 2ax + b = 0$ are real and distinct and they differ by at most 2m, then b lies in the interval

A.
$$\left(a^2-m^2,a^2
ight)$$

B. $\left(a^2,a^2+m^2
ight)$
C. $\left[a^2-m^2,a^2
ight]$
D. $\left(a^2-m^2,a^2+m^2
ight)$

Answer: C

9. Let $f: N\overrightarrow{Y}$ be a function defined as f(x)=4x+3 , where $Y=\{y\in N\colon y=4x+3 ext{ for some } x\in N\}$. Show that f is invertible and

its inverse is (1)
$$g(y) = \frac{3y+4}{3}$$
 (2) $g(y) = 4 + \frac{y+3}{4}$ (3) $g(y) = \frac{y+3}{4}$ (4) $g(y) = \frac{y-3}{4}$

A.
$$g(y) = 4 + rac{y+4}{4}$$

B. $g(y) = rac{y+3}{4}$
C. $g(y) = rac{3y+4}{3}$
D. $g(y) = rac{y-3}{4}$

Answer: D

Natch Video Solution

10. Area bounded by $|x-1| \leq 2 \, ext{ and } \, x^2-y^2=1, \,$ is

A.
$$6\sqrt{3} + rac{1}{2} \mathrm{log} ig| 3 + 2\sqrt{2} ig|$$

B. $6\sqrt{2} + rac{1}{2} \mathrm{log} ig| 3 - 2\sqrt{2} ig|$

$$\mathsf{C.}\,6\sqrt{2} - \log\bigl|3 + 2\sqrt{2}$$

D. none of these

Answer: C

11. It is given that the events A and B are such that
$$P(A) = \frac{1}{4}, P\left(\frac{A}{B}\right) = \frac{1}{2}$$
 and $P\left(\frac{B}{A}\right) = \frac{2}{3}$. Then $P(B)$ is
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{6}$

Answer: A

12. From the matrix equation AB=AC, we conclude B=C provided.

A. A si singular

B. A is skew symmetric

C. A is non - singular

D. none of these

Answer: C

Watch Video Solution

13. The given expression $f(x) = \frac{1}{\tan x + \cot x + \sec x + \csc x}$ is equivalent to

A.
$$\frac{1}{2(\sin x + \cos x - 1)}$$

B.
$$\frac{\sin x + \cos x - 1}{2}$$

C.
$$\frac{1}{2(\sin x - \cos x + 1)}$$

D.
$$\frac{\sin x - \cos x + 1}{2}$$

Answer: B

14. In any
$$!ABC$$
 , If $\cot\left(\frac{A}{2}\right)$, $\cot\left(\frac{B}{2}\right)$, $\cot\left(\frac{C}{2}\right)$ are in A.P., then a,b,c

are in

A. G.P.

B. H.P

C. A.P.

D. A.G.P.

Answer: C

Watch Video Solution

15. If $\omega=z/[z-(1/3)i]~{
m and}~|\omega|=1$, then find the locus of z.

A. a circle

B. an ellipse

C. a parabola

D. a straight line

Answer: D

16. If
$$g(x) = \int \!\! 0 imes^x \log_e(ex) dx$$
 , then $g'(\pi)$ equals

A. $\pi^{\pi} \log_e(e\pi)$

B. $\pi \log_e \pi$

 $\mathsf{C}.\,\pi^{\pi}\log_{e}\pi$

D. none of these

Answer: A

17. A value of c for which the conclusion of Mean value theorem holds for the function $f(x) = \log_e x$ on the interval [1, 3] is

A. $\log_3 e$

 $\mathsf{B.}\log_e 3$

 $\mathsf{C.} 2 \log_3 e$

D.
$$\frac{1}{2}\log_e 3$$

Answer: C

18.
$$x \frac{dy}{dx} = y(\log y - \log x + 1)$$

A.
$$x \log \frac{y}{x} = cy$$

B. $y \log \left(\frac{x}{y}\right) = cx$
C. $\log \left(\frac{x}{y}\right) = cy$

$$\mathsf{D}.\log\Bigl(\frac{y}{x}\Bigr) = cx$$

Answer: D

19. The equation of the straight line passing through the point (4, 3) and making intercepts on the co ordinate axes whose sum is -1, is

A.
$$\frac{x}{2} + \frac{y}{3} = 1$$
 or $\frac{x}{2} + \frac{y}{1} = 1$
B. $\frac{x}{2} - \frac{y}{3} = -1$ or $\frac{x}{-2} + \frac{y}{1} = 1$
C. $\frac{x}{2} + \frac{y}{3} = -1$ or $\frac{x}{-2} + \frac{y}{1} = 1$
D. $\frac{x}{2} - \frac{y}{3} = 1$ or $\frac{x}{-2} + \frac{y}{1} = 1$

Answer: D

20. If n(U)=700, n(A)=200, $n(B)=240\,$ and $\,n(A\cap B)=100,$ then $n\Big(A^C\cup B^C\Big)$ is equal to

A. 260

B. 560

C. 360

D. 600

Answer: D

Watch Video Solution

21. The third term of a G.P. is 7, the product of its first five terms is

A. 7^4

B. 7^{5}

 $C. 7^{6}$

 $\mathsf{D.}~7^3$

Answer: B

22. Four parts of 24 are in A.P. such that the ratio of product of extremes

to products of means is 7:15, then four parts are

A.
$$\frac{3}{2}$$
, $\frac{9}{2}$, $\frac{15}{2}$, $\frac{21}{2}$
B. $\frac{11}{2}$, $\frac{13}{2}$, 3, 9
C. $\frac{5}{2}$, $\frac{15}{2}$, $\frac{9}{2}$, $\frac{21}{2}$
D. $\frac{21}{2}$, $\frac{9}{2}$, $\frac{15}{2}$, $\frac{7}{2}$

Answer: A

23. If the coefficient of rth term and $\left(r+1
ight)^{th}$ term in the expansion of

 $\left(1+x
ight)^{20}$ are in ratio 1:2, then r is equal to

A. 6	
B. 7	
C. 8	
D. 9	

Answer: B

Watch Video Solution

24. Find the equation of tangent to the curve y $= 1 + e^{-2x}$

Where it cuts the line y=2

A. x + 2y = 2

B. 2x + y = 2

C. x - 2y = 1

D. x - 2y + 2 = 0

Answer: B

25. The ratio in which the xy - plane divides the join of (1, 2, 3) and (4, 2, 1)

is

A. 3:1 internally

B. 3:1 externally

C. 1:2 internally

D. 2:1 externally

Answer: B

Watch Video Solution

26. If *P* is a point in space such that OP = 12 and \overrightarrow{OP} is inclied at angle of 45° and 60° with OX and OY respectively, then the position vector of *P* is

A.
$$6\hat{i}+6\hat{j}+6\sqrt{2}\hat{k}$$

B. $6\hat{i}+6\sqrt{2}\hat{j}\pm 6\hat{k}$

C. $6\sqrt{2}\hat{i}+6\hat{j}\pm6\hat{k}$

D. none of these

Answer: C

Watch Video Solution

27. The point in which the line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ meets the plane x - 2y + z = 20 is A. (7, -8, 26)B. (8, 7, 26)C. (7, 8, 26)D. none of these

Answer: B

28. The maximum value of f(x) = |xInx| in $x \in (0, 1)$ is

A. 1/e

B.e

C. 1

D. none of these

Answer: A

Watch Video Solution

29. If the line ax + by + c = 0 is normal to the curve xy + 5 = 0, then

A. a > 0, b > 0

B. b > 0, a < 0

 ${\sf C}.\, b < 0, a > 0$

D. none of these

Answer: A

30. If $(\log)_2 x + (\log)_2 y \ge 6$, then the least value of x + y is 4 (b) 8 (d) 16 (d) 32 A. 4 B. 8 C. 16

D. 32

Answer: C

31. The equation of the plane perpendicular to the line $\frac{x-1}{1}, \frac{y-2}{-1}, \frac{z+1}{2}$ and passing through the point (2, 3, 1). Is

A.
$$\overrightarrow{r}.\left(\hat{i}+\hat{j}+2\hat{k}
ight)=1$$

B.
$$\overrightarrow{r}$$
. $\left(\hat{i} - \hat{j} + 2\hat{k}
ight) = 1$

C.
$$\overrightarrow{r}$$
. $\left(\hat{i} - \hat{j} + 2 \hat{k}
ight) = 7$

D. none of these

Answer: B

Watch Video Solution

32. Let
$$f(x)=\int_{x^2}^{x^3}rac{dt}{\ln t}$$
 for $x>1$ and $g(x)=\int_1^x ig(2t^2-\ln tig)f(t)dt(x>1),$ then:

A. f(x) is an increasing function

B. f(x) has a minima at x = 1

C. f(x) is a decreasing function

D. f(x) has a maxima at x = 1

Answer: A

Watch Video Solution

33. The rang of
$$y = rac{|\sin x|}{1+|\sin x|}$$
 is

A. 0 < y < 1

 $\texttt{B.0} \leq y \leq 1$

 $\mathsf{C}.\, 0 \leq y < 1$

D. none of these

Answer: D

A.
$$n\pi+rac{\pi}{4},n\in Z$$

B. $n\pi-rac{\pi}{4},n\in Z$
C. $2n\pi-rac{\pi}{4},n\in Z$
D. $2n\pi+rac{\pi}{4},n\in Z$

Answer: A

35. General solution of the equation :

$$\sin x + \cos x = \min_{a \in R} \{1, a^2 - 4a + 6\} \text{ is :}$$
A. $\frac{n\pi}{2} + (-1)^n \frac{\pi}{4}, n \in Z$
B. $2n\pi + (-1)^n \frac{\pi}{4}, n \in Z$
C. $n\pi + (-1)^{n+1} \frac{\pi}{4}, n \in Z$

D.
$$n\pi+(-1)^nrac{\pi}{4}-rac{\pi}{4}, n\in Z$$

Answer: D

36. If the extremities of a diameter of a circle are (0, 0) and $(a^3, 1/a^3)$)then the circle passes through which one of the following points ?

A.
$$\left(a, \frac{1}{a}\right)$$

B. $\left(a^2, \frac{1}{a^2}\right)$
C. $\left(\frac{1}{a^2}, a^2\right)$
D. $\left(\frac{1}{a}, a\right)$

Answer: D

37. If in a triangle ABC, $a\cos^2\left(\frac{C}{2}\right)\cos^2\left(\frac{A}{2}\right) = \frac{3b}{2}$, then the sides

 $a, b, andc\,$ are in A.P. b. are in G.P. c. are in H.P. d. satisfy $a+b=\,\cdot\,$

A. satisfy a + b = c

B. are in A.P.

C. are in G.P.

D. are in H.P.

Answer: B

Watch Video Solution

38. If ω be the imaginary cube root of 1, the value of $\frac{7+11\omega+3\omega^2}{13+7\omega+11\omega^2} + \frac{7+11\omega+13\omega^2}{11+13\omega+7\omega^2}$ will be

B. 3

C. 0

 $\mathsf{D.}-1$

Answer: D

40. If
$$\alpha$$
, β are the roots of $x^2 - ax + b = 0$, then $\lim_{x \to \alpha} \frac{e^{x^2 - ax + b}}{x - \alpha} =$
A. $\beta - \alpha$
B. $\alpha - \beta$
C. 1
D. $2\alpha - a$
Answer: B

41. The standard deviation of 50 values of a variable x is 15, if each value of the variable is divided by (-3), then the standard deviation of the new set of 50 values of x will be

A. 15

 $\mathsf{B.}-5$

C. 5

D. - 15

Answer: C

Watch Video Solution

42. If
$$f(x) = \begin{cases} rac{\sin \{\cos x\}}{x - rac{\pi}{2}} & x \neq rac{\pi}{2} \\ 1 & x = rac{\pi}{2} \end{cases}$$
, where {k} represents the fractional

park of k, then:

- A. f(x) is continuous at $x=\pi/2$
- B. $\lim_{x o \pi/2} f(x)$ exists, but f is not continuous at $x = \pi/2$
- C. $\lim_{x\,
 ightarrow\,\pi\,/\,2}\,f(x)$ does not exist
- D. $\lim_{x\,
 ightarrow\,\pi\,/\,2}\,f(x)=\,-\,1$

Answer: C

Watch Video Solution

44. The differential coefficient of $f(\log_e x)w.r.t.x$, where $f(x) = \log_e x$, is (i) $\frac{x}{\ln x}$ (ii) $\frac{\ln x}{x}$ (iii) $\frac{1}{x \ln x}$ (iv) $x \ln x$ A. $\frac{x}{\log_e x}$ B. $(x \log_e x)^{-1}$ C. $\frac{\log_e x}{x}$ $\mathsf{D}.\, x \log_e x$

Answer: B

Watch Video Solution

45. if
$$|\overrightarrow{a}| = 4$$
, $|\overrightarrow{b}| = 2$ and the angle between \overrightarrow{a} and \overrightarrow{b} is $\frac{\pi}{6}$ then $\left(\overrightarrow{a} \times \overrightarrow{b}\right)^2$ is equal to

A. 48

B. 16

C. 0

D. 3

Answer: B

46.Solutionofthedifferentialequation
$$\frac{dy}{dx}$$
tan $y = \sin(x + y) + \sin(x - y)$ isA. $\sec y - 2\cos x = c$ B. $\sec y + 2\cos x = c$ C. $\cos y - 2\sin x = c$ D. $\sec y + 2\sin x = c$

Answer: B

Watch Video Solution

47. The cartesian co-ordinates of a point are $(1,\ -1)$, its polar co -

ordinates are

A.
$$\left(\sqrt{2}, \frac{\pi}{4}\right)$$

B. $\left(\sqrt{2}, \frac{3\pi}{4}\right)$
C. $\left(\sqrt{2}, \frac{5\pi}{4}\right)$

$$\mathsf{D}.\left(\sqrt{2},\,\frac{7\pi}{4}\right)$$

Answer: D

48. If the sum of the squares of the deviations of 25 observations taken from the mean 40 is 900, then the coefficient of variation is

A. 20~%

B. 12.5 %

C. 15 %

D. 18~%

Answer: C

49. Two sides of a rhombus are along the lines, x - y + 1 = 0 and 7x - y - 5 = 0. If its diagonals intersect at (-1, -2), then which one of the following is a vertex of this rhombus ? (1) (-3, -9) (2) (-3, -8) (3) $(\frac{1}{3}, -\frac{8}{3})$ (4) $(-\frac{10}{3}, -\frac{7}{3})$ A. (-3, -9)B. (-3, -8)C. $(\frac{1}{3}, -\frac{8}{3})$ D. $(-\frac{1}{3}, -\frac{7}{3})$

Answer: C

Watch Video Solution

50. If 5^{40} is divided by 11, then remainder is

A. 2

B. 3

C. 5

D. 1

Answer: D

View Text Solution

Category 2 Single Option Correct Type

1. An ellipse has eccentricity $\frac{1}{2}$ and one focus at the point $P\left(\frac{1}{2}, 1\right)$. Its one directrix is the comionand tangent nearer to the point the P to the hyperbolaof $x^2 - y^2 = 1$ and the circle $x^2 + y^2 = 1$.Find the equation of the ellipse.

A.
$$9\left(x - \frac{1}{3}\right)^2 + 12(y - 1)^2 = 1$$

B. $12\left(x - \frac{1}{3}\right)^2 + 9(y - 1)^2 = 1$
C. $\left(x - \frac{1}{2}\right)^2 + \frac{(y - 2)^2}{9} = 1$
D. $3\left(x + \frac{1}{2}\right)^2 + 4(y - 1)^2 = 1$

Answer: A

2. AB is a chord of the parabola $y^2 = 4ax$ with its vertex at A. BC is drawn perpendicular to AB meeting the axis at C.The projecton of BC on the axis of the parabola is

A. a

B. 2a

C. 4a

D. 8a

Answer: C

3. If $\frac{1+3p}{4}, \frac{1-p}{3}, \frac{1-3p}{2}$ are the probabilities of three mutually

exclusive events, then the set of all values of p is

A.
$$\left[-\frac{1}{3}, \frac{1}{3}\right]$$

B. $\left[-\frac{1}{3}, 1\right]$
C. $\left[\frac{1}{13}, 1\right]$
D. $\left[\frac{1}{13}, \frac{1}{3}\right]$

Answer: D

Watch Video Solution

4.
$$f(x) = egin{cases} 3[x] - rac{5|x|}{x}, & x
eq 0 \ 2, & x = 0 \end{cases}$$
 . Then $\int_{-3/2}^2 f(x) dx = ([\,\cdot\,]\,)$

5. Number 1, 2, 3,...,2n (n in N) are printed on 2n cards. The probability of drawing a number r is proportional to r. Then the probability of drawing an even number in one draw is

A.
$$\frac{n+2}{n+3}$$

B. $\frac{n+1}{n+3}$
C. $\frac{1}{2}$
D. $\frac{n+1}{2n+1}$

Answer: D

C. 1

D.
$$\frac{3\pi}{2}$$

Answer: A

7. Let
$$f(x) = e^c 0 s^{(-1)} \left\{ \sin \left(x + \frac{\pi}{3} \right) \right\}$$
. Then, $f\left(\frac{8\pi}{9} \right) = e^{5\pi/18}$ (b) $e^{13\pi/18}$ (c) $e^{-2\pi/18}$ (d) none of these

A.
$$e^{\frac{7\pi}{12}}$$

B. $e^{\frac{13\pi}{18}}$

$$\mathsf{C.}\,e^{\frac{5\pi}{18}}$$

 $\mathsf{D.}\,e^{\frac{\pi}{12}}$

Answer: B

8. If
$$e^y + xy = e$$
, then: $\left[\frac{d^2y}{dx^2}\right]_{x=0}$ is equal to
A. $\frac{1}{e}$
B. $\frac{1}{e^3}$
C. $\frac{1}{e^2}$

D. none of these

Answer: C

9. The value of
$$\left| \overrightarrow{a} imes \hat{i} \right|^2 + \left| \overrightarrow{a} imes \hat{j} \right|^2 + \left| \overrightarrow{a} imes \hat{k} \right|^2$$
 is

A.
$$\left| \overrightarrow{a} \right|^2$$

B. $3 \left| \overrightarrow{a} \right|^2$
C. $4 \left| \overrightarrow{a} \right|^2$
D. $2 \left| \overrightarrow{a} \right|^2$

Answer: D

Answer: C

11. A spherical iron ball 10 cm in radius is coated with a layer of ice of uniform thickness that melts at a rate of $50cm^3 / \min$. When the thickness of ice is 5 cm, then the rate at which the thickness of ice decreases, is:

A.
$$\frac{1}{18\pi}cm / \min$$

B. $\frac{1}{36\pi}cm / \min$
C. $\frac{5}{6\pi}cm / \min$
D. $\frac{1}{54\pi}cm / \min$

Answer: A

12.
$$\int \left\{ \frac{\log x - 1}{1 + (\log x)^2} \right\}^2 dx \text{ is equal to}$$
A.
$$\frac{x}{x^2 + 1} + C$$
B.
$$\frac{\log x}{(\log x)^2 + 1} + C$$

C.
$$rac{x}{\left(\log x
ight)^2+1}+C$$

D. $rac{xe^x}{1+x^2}+C$

Answer: C

Watch Video Solution

13. If P and Q are the points of intersection of the circles $x^2 + y^2 + 3x + 7y + 2p5 = 0$ and $x^2 + y^2 + 2x + 2yp^2 = 0$, then there is a circle passing through P, Q and (1, 1) for (1) all values of p (2) all except one value of p (3) all except two values of p (4) exactly one value of p

A. all except one value of p

B. all except two values of p

C. exactly one value of p

D. all values of p

Answer: A

14. If
$$\displaystyle rac{4^n}{n+1} < \displaystyle rac{(2n)\,!}{(n\,!)^2}$$
 then $P(n)$ is true for
A. $n\geq 1$
B. $n>0$
C. $n<0$

 $\mathsf{D}.\,n\geq 2$

Answer: D

Watch Video Solution

15. α , β are the roots of the equation $k(x^2 - x) + x + 5 = 0.$ if k_1 , k_2 are two values of kfor which the roots α , β are connected by the relation $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{4}{5}.$ find the value of $\frac{k_1}{k_2} + \frac{k_2}{k_1}$

A. 254

B. 0

C. 245

D.-254

Answer: A

Watch Video Solution

Category 3 One Or More Than One Option Correct Type

1. In a ΔABC , $\tan A$ and $\tan B$ are the roots of the equation $ab(x^2+1)=c^2x$, where a, b and c are the sides of the triangle. Then

A.
$$an(A-B)=rac{a^2-b^2}{2ab}$$

 $\mathsf{B.}\cot C=0$

$$\mathsf{C.} \sin^2 A + \sin^2 B = 1$$

D. none of these

Answer: A::B::C

Answer: C::D

Watch Video Solution

3. The value of
$$\left(\frac{\cos \alpha + \cos \beta}{\sin \alpha - \sin \beta}\right)^n + \left(\frac{\sin \alpha + \sin \beta}{\cos \alpha - \cos \beta}\right)^n$$
 (where n is a

whole number) is equal to

A. 0, when n is odd

B.
$$2\frac{\tan^n(\alpha-\beta)}{2}$$
, $\forall n$
C. $2\cot^n\frac{\alpha-\beta}{2}$, when n is even
D. $2\cot^n\frac{\alpha+\beta}{2}$, when n is even

Answer: A::C

Watch Video Solution

4. The 6th term of expansion $\left[\sqrt{2^{\log_{10}(10-3^x)}} + \sqrt[5]{2^{(x-2)\log_{10}3}}\right]^m$ is 21 and the coefficient of 2^{nd} , 3^{rd} and 4^{th} terms of it are respectively 1^{st} , 3^{rd} and 5^{th} term of an A.P. Find x.

A. 0

B. 1

C. 2

D. 3

Answer: A::C

5. A focus of the hyperbola
$$25x^2 - 36y^2 = 225$$
 is

A.
$$(\sqrt{16}, 0)$$

B. $(\frac{1}{2}\sqrt{61}, 0)$
C. $(-\sqrt{61}, 0)$
D. $(-\frac{1}{2}\sqrt{61}, 0)$

Answer: B::D

Watch Video Solution

6. Let $f(n) = egin{pmatrix} n & n+1 & n+2 \\ .^n P_n & .^{n+1} P_{n+1} & .^{n+2} P_{n+2} \\ .^n C_n & .^{n+1} C_{n+1} & .^{n+2} C_{n+2} \end{bmatrix}$ where the sysmbols

have their usual neanings .then f(n) is divisible by

A. $n^2 + n + 1$ B. (n + 1)!C. n!

D. none of these

Answer: A::C

Watch Video Solution

7. Point R divides line joining A(-5, 1) and B(3, 5) in the ratio λ : 1. The co - ordinates of P and Q are (1, 5) and (7, 2) respectively. If the area of the triangle PQR be 2 sq. units, then the value of λ is

A.
$$\frac{19}{5}$$

B. $\frac{31}{9}$
C. 23

D. 19

Answer: A::C

8. If the conjugate of (x+iy)(1-2i) be 1+i, then

A.
$$x = rac{1}{5}$$

B. $x + iy = rac{1}{5}(3+i)$
C. $x - iy = rac{1}{5}(3+i)$
D. $x + iy = rac{1-i}{1+2i}$

Answer: B

Watch Video Solution

9. Let $f\!:\!R o R$ be given by $f(x)=[x]^2+[x+1]-3$, where [x] denotes the greatest integer less than or equal to x . Then, f(x) is (a)

many-one and onto (b) many-one and into (c) one-one and into (d) oneone and onto

A. f(x) is many - one and into function

B. f(x) = 0 for infinite number of values of x

C. f(x) = 0 for only two real values of x

D. none of these

Answer: A::B

Watch Video Solution

10. If
$$A=\int_0^\pi rac{\sin x}{\sin x+\cos x}dx, B=\int_0^\pi rac{\sin x}{\sin x-\cos x}dx$$
, then

A.
$$A + B = 0$$

 $\mathsf{B.}\, A=B$

C. $A=B=\pi/2$

 $\mathsf{D}.\, A = \, -\, B = \pi$

Answer: B::C

