© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MTG-WBJEE PHYSICS

(HINGLISH)

ATOMIC PHYSICS

Wbjee Workout Category 1 Single Option Correct

Type

1. The ionisation potential of hydrogen atom is
-13.6 eV . An electron in the ground state of a
hydrogen atom absorbs a photon of energy
12.75 eV . How many diggerent spectral lines
can one expect when the electron make a downward transition
A. 1
B. 4
C. 2
D. 6

Answer: D

D Watch Video Solution

2. If the electron in a hydrogen atom jumps
from an orbit with level $n_{1}=2$ an orbit with
level $n_{2}=1$. The emitted radiation has a wavelength given by

$$
\begin{aligned}
& \text { А. } \lambda=\frac{5}{3 R} \\
& \text { В. } \lambda=\frac{4}{3 R} \\
& \text { С. } \lambda=\frac{R}{4}
\end{aligned}
$$

D. $\lambda=\frac{3 R}{4}$

Answer: B

D Watch Video Solution

3. In an inelastic collision an electron excites a
hydrogen atom from its ground state to a M Shell state. A second electron collides instantaneously with the excited hydrogen atom in the m-Shell state and ionizes it. At leas
how much energy the second electron transfors to the atom is the M-shell state?
A. $+3.4 e V$
B. +1.51 eV
C. $-3.4 e V$
D. -1.51 eV

Answer: B

D Watch Video Solution
4. Two elements A and B with atomic numbers
Z_{A} and Z_{B} are used to produce charateristic

X-rays with frequencies v_{A} and v_{B} respectively.
If $Z_{A}: Z_{B}=1: 2$, then $v_{A}: v_{B}$ will be
A. $1: \sqrt{2}$
B. $1: 8$
C. $4: 1$
D. 1: 4

Answer: D

5. The total energy of eletcron in the ground state of hydrogen atom is -13.6 eV . The kinetic enegry of an electron in the first excited state is
A. 6.8 eV
B. 13.6 eV
C. 1.7 eV
D. 3.4 eV

Answer: D

- Watch Video Solution

6. Radius of the first orbit of the electron in a
hydrogen atom is $0.53 \AA$. So, the radius of the third orbit will be
A. $1.12 \stackrel{\circ}{A}$
B. $4.77{ }^{\circ} A$
C. $1.06{ }^{\circ} A$
D. $1.59{ }^{\circ} A$

Answer: B

D Watch Video Solution

7. Energy of the electron in $n t h$ orbit of hydrogen atom is given by $E_{n}=-\frac{13.6}{n^{2}} e V$.

The amount of energy needed to transfer electron from first orbit to third orbit is
A. 13.6 eV
B. 3.4 eV
C. 12.09 eV

D. 1.51 eV

Answer: C

D Watch Video Solution

8. The ratio of the speed of the electrons in
the ground state of hydrogen to the speed of
light in vacuum is

$$
\begin{aligned}
& \text { A. } \frac{e^{2}}{2 \varepsilon_{0} h c} \\
& \text { B. } \frac{2 e^{2} \varepsilon_{0}}{h c}
\end{aligned}
$$

C. $\frac{e^{3}}{2 \varepsilon_{0} h c}$
D. $\frac{2 \varepsilon_{0} h c}{e^{2}}$

Answer: A

D Watch Video Solution

9. When the wave of hydrogen atom comes
from infinity into the first then the value of
wave number is
A. $109700 \mathrm{~cm}^{-1}$

B. $1097 \mathrm{~cm}^{-1}$

C. $109 \mathrm{~cm}^{-1}$
D. None of these

Answer: A

- Watch Video Solution

10. In which of the following systems will the
radius of the first orbit ($n=1$) be minimum?
A. Single ionised helium
B. Deuteron atom
C. Hydrogen atom
D. Doubly ionised lithium

Answer: D

D Watch Video Solution

11. Which of the following atoms has the lowest ionization potential ?

$$
\text { A. }{ }_{8} O^{16}
$$

B. ${ }_{7} N^{14}$
C. ${ }_{55} C s^{133}$
D. ${ }_{18} A r^{40}$

Answer: C

D Watch Video Solution

12. Energy levels A, B, C of a certain atom corresponding to increasing values of energy i.e., $E_{A}<E_{B}<E_{C}$. If $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are the wavelengths of radiations correspnding to the
transitions C to B, B to A and C to A respectively, which o the following statements is correct?

A. $\lambda_{3}=\lambda_{1}+\lambda_{2}$
B. $\lambda_{3}=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}$
C. $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$
D. $\lambda_{3}^{2}=\lambda_{1}^{2}+\lambda_{2}^{2}$

Answer: B

D Watch Video Solution

13. Calculate the minimum wavelength of X -
rays produced by an X-ray tube operating at
30 kV .
$\left.h=6.6 \times 10^{-27} \mathrm{erg}-\mathrm{sec}\right]$
A. 42.4 nm
B. $4.2{ }^{\circ}{ }_{A}$
C. $0.4125{ }^{\circ} A$

D. $4.8 \mu m$

Answer: C

D Watch Video Solution

14. A sample of hydrogen atom gas contains

100atom. All the atoms are excited to the same $n^{\text {th }}$ excited state. The total energy released by all the atoms is $\frac{4800}{49} R c h$ (where
$R c h=13.6 \mathrm{eV})$, as they come to the ground
state through various types of transitions,

Find
A. $\frac{48}{49} R c h$
B. $\frac{49}{49} R c h$
C. $\frac{4900}{48} R c h$
D. $\frac{48}{49 R c h}$

Answer: A

D Watch Video Solution

15. The ratio of wavelength of the lest line of Balmer series and the last line Lyman series is:
A. 2
B. 1
C. 4
D. 0.5

Answer: C

D Watch Video Solution
16. An energy of 24.6 eV is required to remove one of that electrons from a neutal helium atom. The enegy (in $e V$)required to remove both the electrons from a netural helium atom is
A. 38.2
B. 49.2
C. 51.8
D. 79

Answer: D
17. If the atom (-100) Fm^{257} follows the Bohr model the radius of ${ }_{-}(100) F m^{257}$ is n time the Bohr radius, then find n.
A. 4
B. $1 / 4$
C. 100
D. 200

- Watch Video Solution

18. A free atom of iron emits K_{α} X-rays of energy 6.4 keV . Calculate the recoil kinetic energy of the atom. Mass of and iron atom

$$
=9.3 \times 10^{-26} \mathrm{~kg} .
$$

A. $39 \times 10^{-4} \mathrm{eV}$
B. $3.9 \times 10^{-4} \mathrm{eV}$
C. $0.39 \times 10^{-4} \mathrm{eV}$
D. $3.9 \times 10^{-2} \mathrm{eV}$

Answer: B

D Watch Video Solution

19. One increasing the operating voltage in a x ray tube by 1.5 times, the shortest wavelength decreases by 26 pm . Find the original value of operating voltage.
A. $1 \cdot 24 \times 10^{4} V$
B. $15 \cdot 9 \times 10^{-2} V$
C. $3 \times 10^{6} V$

D. $15 \cdot 9 \times 10^{3} V$

Answer: D

D Watch Video Solution

20. Characteristic X-rays of frequency
$4.2 \times 10^{18} \mathrm{~Hz}$ are produced when transitions
from L-shell to K-shell take place in a certain target material. Use Mosley's law to determine
the atomic number of the target material.
Given Rydberg constant $R=1.1 \times 10^{7} m^{-1}$.
A. 43
B. 44
C. 42
D. 10

Answer: C

D Watch Video Solution

21. Monochromatic radiation of wavelength λ are incident on a hydrogen sample in ground state. Hydrogen atoms absorb the light and
subsequently emit radiations of 10 different wavelength . The value of λ is nearly:
A. 6
B. 5
C. 3
D. 4

Answer: B
(Watch Video Solution
22. If a hydrogen atom emit a photon of energy 12.1 eV , its orbital angular momentum changes by ΔL. thenDelta L`equals
A. $1.05 \times 10^{-34} \mathrm{Js}$
B. $2.11 \times 10^{-34} \mathrm{Js}$
C. $3.16 \times 10^{-34} \mathrm{Js}$
D. $4.22 \times 10^{-34} \mathrm{Js}$

Answer: B

D Watch Video Solution
23. An electron in hydrogen atom jumps from
n_{1} state to n_{2} state, where n_{1} and n_{2} represent the quantum number of two states.

The time period of revolution of electron in
initial state is 8 times that in final state. Then
the ratio of n_{1} and n_{2} is
A. $1: 2$
B. $4: 1$
C. 1: 4
D. $2: 1$

Answer: D

D Watch Video Solution

24. In Rutherford's scattering experiment, 60
particles were scattered per min for $\theta_{1}=90^{\circ}$.

How many particles will be scattered per min for $\theta_{2}=60^{\circ}$?
A. 60
B. 120
C. 180

D. 240

Answer: D

D Watch Video Solution

25. A beam of fast moving alpha particles was
directed toward a thin film of gold.
The parts A^{\prime}, B^{\prime} and C^{\prime} of the transmitted and reflected beams corresponding to the incident parts A, B and C of the beam are as
shown in the diagram. The number of alpha
particle in
A. C^{\prime} will be minimum and in B^{\prime} maximum
B. A^{\prime} will be minimum and in B^{\prime} maximum
C. A^{\prime} will be maximum and in B^{\prime} minimum
D. B^{\prime} will be minimum and in C^{\prime}
maximum.

Answer: C

D View Text Solution
26. Calculate the impact parameter of a 5 MeV particle scattered by 90°, when it approach a gold nucleus (Z=79).
A. $1.5 \times 10^{-14} \mathrm{~m}$
B. $2.27 \times 10^{-14} \mathrm{~m}$
C. $3 \times 10^{-14} \mathrm{~m}$
D. $3.37 \times 10^{-17} m$

Answer: B

27. The approximate value of quantum number

n for the circular orbit of hydrogen of
0.0001 nm in diameter is
A. 100
B. 60
C. 81
D. 31

Answer: D

- Watch Video Solution

28. The product of linear momentum and angular momentum of an electron of the hydrogen atom is proportional to n^{x}, where x is
A. 1
B. -2
C. 2
D. 0

Answer: D

29. In hydrogen atom, if the difference in the energy of the electron in $n=2$ and $n=3$ orbits is E, the ionization energy of hydrogen atom is
A. 3.2 E
B. 5.6 E
C. 7.2 E
D. 13.2 E

D Watch Video Solution

30. What is the radius of iodine atom (at no.

53 , mass number 126)?

> A. $2.5 \times 10^{-9} \mathrm{~m}$
> B. $7 \times 10^{6} \mathrm{~m}$
> C. $7 \times 10^{-9} \mathrm{~m}$
> D. $2.5 \times 10^{-11} \mathrm{~m}$

Answer: D

D Watch Video Solution

Wbjee Workout Category 2 Single Option Correct

 Type1. Which of the following transitions will have
highest emission wavelength ?
A. $n=2$ to $n=1$
B. $\mathrm{n}=1$ to $\mathrm{n}=2$

$$
\text { C. } \mathrm{n}=2 \text { to } \mathrm{n}=5
$$

D. $\mathrm{n}=5$ to $\mathrm{n}=2$

Answer: D

D Watch Video Solution

2. An alpha particle of energy $5 M e V$ is
scattered through 180° by a found uramiam
nucleus . The distance of closest approach is
of the order of
A. $1{ }^{\circ}$ i
B. $10^{-10} \mathrm{~cm}$
C. $10^{-12} \mathrm{~cm}$
D. $10^{-15} \mathrm{~cm}$

Answer: C

D Watch Video Solution

3. An element of atomic number 9 emits K_{α} X-

ray of wavelength λ. Find the atomic number
of the element which emits K_{α} X-ray of wavelength 4λ.
A. 11
B. 44
C. 6
D. 5

Answer: C
(Watch Video Solution
4. The largest wavelength in the ultraviolet region of the hydrogen spectrum is 122 nm .

The smallest wavelength in the infrared region of the hydrogen spectrum (to the nearest integer) is
A. 802 nm
B. 823 nm
C. 1882 nm
D. 1648 nm

Answer: B
5. The electric potential between a proton and as electron is given by $V=V_{0} \frac{\ln (r)}{r_{0}}$, where r_{0} is a constant. Assuming Bohr's model to be applicable, write variation of r_{n} with n, n being the principal quantum number?
A. $r \propto n^{2}$
B. $r \propto n$
C. $r \propto \frac{1}{n}$
D. $r \propto \frac{1}{n^{2}}$

Answer: B

D Watch Video Solution

6. Let A_{n} be the area enclosed by the $n^{\text {th }}$ orbit
in a hydrogen atom. The graph of $\ln \left(A_{n} / A_{t}\right)$
against $\ln (n)$
A. will not pass through the origin
B. is a straight line with slope 4

C. will be a monotonically increasing non-

linear curve

D. will be a circle.

Answer: B

D Watch Video Solution

7. The wavelength of K_{α} X-rays of two metals
A and $B \quad \operatorname{are} 4 / 1875 R$ and $1 / 675 R$, respectively, where R is rydberg 's constant.

The number of electron lying between
A and B according to this lineis
A. 3
B. 6
C. 5
D. 4

Answer: D
(Watch Video Solution
8. At what minimum kinetic energy must a
hydrogen atom move for it's inelastic headon
collision with another stationary hydrogen
atom so that one of them emits a photon?

Both atoms are supposed to be in the ground
state prior to the collision.
A. 20.4 eV
B. 36.3 eV
C. 108.8 eV
D. 122.4 eV

Answer: A

D Watch Video Solution

9. Let v_{1} be the frequency of series limit of

Lyman series, v_{2} the frequency of the first line
of Lyman series and v_{3} the frequency of series
limit of Balmer series. Then which of the following is correct ?
A. $v_{1}-v_{2}=v_{3}$
B. $v_{2}-v_{1}=v_{3}$

$$
\begin{aligned}
& \text { C. } v_{3}=\frac{1}{2}\left(v_{1}+v_{2}\right) \\
& \text { D. } v_{2}+v_{1}=v_{3}
\end{aligned}
$$

Answer: A

D Watch Video Solution

10. Electrons with energy 80 keV are incident on the tungsten target of an X - rays tube, k shell electrons of tungsten have 72.5 keV energy X- rays emitted by the tube contain only

A. a
 continuous

(Bremsstrahlung) with a minimum
wavelength of 0.155 overerset $(\circ)(A)$
B. a
continuous
X-ray
spectrum
(Bremsstrahlung) with all wavelengths.
C. a continuous X-ray spectrum of
tungsten.
D. a continuous X-ray spectrum
(Bremsstrahlung) with a minimum
wavelength of $0.155 \stackrel{\circ}{A}$ and the
characteristic X-ray spectrum of tungsten.

Answer: D

- Watch Video Solution

11. A. How many photons of a tradiation of wavelength $\lambda=5 \times 10^{-7} \mathrm{~m}$ must fall per second on a blackened plate in order to produce a force of $6.62 \times 10^{-5} \mathrm{~N}$?
B. At what rate will the temperature of plate
rise if its mass is 19.86 kg and specific heat is equal to $2500 \mathrm{~J}\left(\mathrm{kgK}^{-1}\right)$?
A. 3×10^{19}
B. 5×10^{22}
C. 2×10^{22}
D. 1.67×10^{18}

Answer: B
(Watch Video Solution
12. A Bohr's hydrogen atom undergoes a transition $n=5 \rightarrow n=4$ and emits a photon of frequency f. Frequency of circular motion of electron in $n=4$ or $\operatorname{bitis} f_{4}$. The ratio f / f_{4} is found to be $18 / 5 m$. State the value of m.
A. 4
B. 2
C. 5
D. 1

Answer: C

D Watch Video Solution

13. Monochromatic radiation of wavelength λ
is incident on a hydrogen sample in ground
state. Hydrogen atoms absorb a fraction of light and subsequently emit radiations of six different wavelength . Find the wavelength λ.
A. 97.5 nm
B. 12.75 nm
C. $14.42 \stackrel{\circ}{A}$
D. 0.85 nm

Answer: A

D Watch Video Solution

14. A single electron orbits around a stationary nucleus of charge +Ze . It requires 47.2 eV to excite the electron from the $2^{\text {nd }}$ to $3^{\text {rd }}$ Bohr orbit. Find atomic number ' Z ' of atom .
A. $Z=4$
B. $Z=5$
C. $Z=3$
D. $Z=2$

Answer: B

D Watch Video Solution

15. A proton has kinetic energy $E=100 \mathrm{keV}$ which is equal to that of a photon. The
wavelength of photon is λ_{2} and that of proton
is λ_{1}. The ratio of $\lambda_{2} / \lambda_{1}$ is proportional to
A. E^{2}
B. $E^{1 / 2}$
C. E^{-1}
D. $E^{-1 / 2}$

Answer: D

D Watch Video Solution

1. Mark out the correct statement regarding X -
rays.
A. When fast moving electrons strike the metal target, they enter the metal target and in a very short time, they come to rest, and thus an accelerated charged electron produces electromagnetic waves (X-rays).
B. Characteristic X-rays are produced due to transition of an electron from higher energy levels to vacant lower energy levels.
C. X-rays spectrum is a discrete spectra just
like hydrogen spectra.

D. Both (a) and (b) are correct.

Answer: B

D Watch Video Solution

2. The potential difference applied to an X-ray tube is increased. As a result, in the emitted radiation,
A. the intensity increases
B. the minimum wavelength increases
C. the intensity remains unchanged
D. the minimum wavelength decreases.

Answer: C::D

3. The electron in a hydrogen atom make a transtion $n_{1} \rightarrow n_{2}$ where n_{1} and n_{2} are the priocipal quantum number of the two states . Assume the Bohr model to be valid. The time period of the electron in the initial state is eight time that in the final state . The possible values of n_{1} and n_{2} are

$$
\begin{aligned}
& \text { A. } n_{1}=4, n_{2}=2 \\
& \text { B. } n_{1}=8, n_{2}=2 \\
& \text { C. } n_{1}=8, n_{2}=1
\end{aligned}
$$

$$
\text { D. } n_{1}=6, n_{2}=3
$$

Answer: A::D

D Watch Video Solution

4. The minimum kinetic energy required for ionization of a hydrogen atom is E_{1} in case electron is collided with hydrogen atom, it is
E_{2} if the the hydrogen ion is collided and E_{1} when helium ion collided. Then.

$$
\text { A. } E_{1}=E_{2}=E_{3}
$$

B. $E_{1}>E_{2}>E_{3}$
C. $E_{1}<E_{2}<E_{3}$
D. $E_{1}>E_{3}>E_{2}$

Answer: C

D Watch Video Solution

5. The energy needed to detach the electron of
a hydrogen like ion in ground state is a system(a) what is the wavelength of the radiation emitted when the electron jumps
from the first excited state to the ground state? (b) What is the radius of the orbit for this atom?
A. $\lambda=12.42 \mathrm{~nm}$ and $r=53 \mathrm{pm}$
B. $\lambda=30.4 \mathrm{~nm}$ and $r=106 \mathrm{pm}$
C. $\lambda=40.8 \mathrm{~nm}$ and $\quad r=26.5 \mathrm{pm}$
D. $\lambda=30.4 \mathrm{~nm}$ and $r=26.5 \mathrm{pm}$

Answer: D

D Watch Video Solution
6. A particle known as mu meson has a charge equal to that of no electron and mass 208
times the mass of the electron B moves in a
circular orbit around a nucleus of charge $+3 e$
Take the mass of the nucleus to be infinite

Assuming that the bohr's model is applicable
to this system (a)drive an expression for the radius of the nth Bohr orbit (b) find the value of a for which the radius of the orbit it appropriately the same as that at the first bohr for a hydrogen atom (c) find the
wavelength of the radiation emitted when the
u - mean jump from the orbit to the first orbit
A. 20
B. 25
C. 30
D. 40

Answer: B
(Watch Video Solution
7. Which one of the following statement is
$W R O N G$ in the context of X - rays generated from X - rays tube ?
A. Wavelength of characteristic X-rays
decreases when the atomic number of
the target increases
B. Cut-off wavelength of the continuous X--
rays depends on the atomic number of
the target.
C. Intensity of the characteristic X-rays
depends on the electrical power given to
the X-ray tube
D. Cut-off wavelength of the continuous X -
rays depends on the energy of the electrons in the X-ray tube.

Answer: B

D Watch Video Solution

8. In Bohr's model of the hydrogen atom:
A. the radius of the $n^{t h}$ orbit is proportional to n^{2}
B. the total energy of the electron in $n^{\text {th }}$ orbit is inversely proportional to n.
C. the angular momentum of electron in an
$n^{t h}$ orbit is an integral multiple of $h / 2 \pi$.
D. the magnitude of potential energy of
the electron in any orbit is greater than

its kinetic energy.

Answer: A::C::D

D Watch Video Solution

9. For a given material, the energy and wavelength of characterstic X-rays satisfy

$$
\begin{aligned}
& \text { A. } E\left(K_{\alpha}\right)>E\left(K_{\beta}\right)>E\left(K_{\gamma}\right) \\
& \text { B. } E\left(M_{\alpha}\right)>E\left(L_{\alpha}\right)>E\left(K_{\alpha}\right) \\
& \text { C. } \lambda\left(K_{\alpha}\right)>\lambda\left(K_{\beta}\right)>\lambda\left(K_{\gamma}\right)
\end{aligned}
$$

$$
\text { D. } \lambda\left(M_{\alpha}\right)>\lambda\left(L_{\alpha}\right)>\lambda\left(K_{\alpha}\right)
$$

Answer: C::D

D Watch Video Solution

10. Hydrogen $\left({ }_{1} H^{1}\right)$, Deuterum $\left({ }_{1} H^{2}\right)$, singly ionised Hellium $\left({ }_{.2} H e^{4}\right)^{+}$and doubly ionised lithium $\left({ }_{3} L i^{6}\right)^{++}$all have one electron around the nucleus. Consider an electron tranition from $n=2$ to $n=1$. If the wave lengths of emitted radiation are
$\lambda_{1}, \lambda_{2}, \lambda_{3} \quad$ and $\quad \lambda_{4} \quad$ respectively then approximately which one of the follwing is correct ?

$$
\begin{aligned}
& \text { A. } 4 \lambda_{1}=2 \lambda_{2}=2 \lambda_{3}=\lambda_{4} \\
& \text { B. } \lambda_{1}=2 \lambda_{2}=2 \lambda_{3}=\lambda_{4} \\
& \text { C. } \lambda_{1}=\lambda_{2}=4 \lambda_{3}=9 \lambda_{4} \\
& \text { D. } \lambda_{1}=2 \lambda_{2}=3 \lambda_{3}=4 \lambda_{4}
\end{aligned}
$$

Answer: C

D Watch Video Solution

1. The ionisation potential of hydrogen atom is
13.6 eV . The energy required to remove an electron in the $n=2$ state of the hydrogen atom is

$$
\begin{aligned}
& \text { A. }+3.4 \mathrm{eV} \\
& \text { B. }-3.4 \mathrm{eV} \\
& \text { C. }+6.8 \mathrm{eV} \\
& \text { D. }-6.8 \mathrm{eV}
\end{aligned}
$$

Answer: D

D Watch Video Solution

2. The ionisation energy of hydrogen is 13.6 eV
. The energy of the photon released when an electron jumps from the first excited state
$(n=2)$ to the ground state of hydrogen atom is
A. 3.4 eV
B. 4.53 eV
C. 10.2 eV

D. 13.6 eV

Answer: C

D Watch Video Solution

3. A photon of wavelength 300 nm interacts
with a stationary hydrogen atom in ground
state. During the interaction, whole energy of
the photon is transferred to the electron of
the atom. State which possibility is correct,
(consider, Plank's constant $=4 \times 10^{-15} \mathrm{eVs}$,
velocity of light $=3 \times 10^{8} \mathrm{~ms}^{-1}$ ionisation energy of hydrogen $=13.6 \mathrm{eV}$)
A. Electron will be knocked out of the atom
B. Electron will go to any excited state of
the atom
C. Electron will go only to first excited state
of the atom
D. Electron will keep orbiting in the ground
state of atom
4. The wavelength of second Balmer line in

Hydrogen spectrum is 600 nm . The wavelength
for its third line in Lymann series is
A. 800 nm
B. 600 nm
C. 400 nm
D. 200 nm
5. The de-Broglie wavelength λ_{n} of the electron in the $n^{\text {th }}$ orbit of hydrogen atom is
A. 1
B. 2
C. 3
D. 4

Answer: B
6. How the linear velocity v of an electron in
the Bohr orbit is related to its quantum number n ?

$$
\begin{aligned}
& \text { A. } v \propto \frac{1}{n} \\
& \text { B. } v \propto \frac{1}{n^{2}} \\
& \text { C. } v \propto \frac{1}{\sqrt{n}} \\
& \text { D. } v \propto n
\end{aligned}
$$

7. The angular speed of the electron in the $n^{t h}$ Bohr orbit of the hydrogen atom is proportional to
A. n^{2}
B. $\frac{1}{n^{2}}$
C. $\frac{1}{n^{3 / 2}}$
D. $\frac{1}{n^{3}}$

(.) Watch Video Solution

Wbjee Previous Years Questions Category 3 One Or More Than One Option Correct Type

1. Let v_{n} and E_{n} be the respective speed and energy of an electron in the n-th orbit radius
r_{n} in a hydrogen atom, as predicted by Bohr's model. Then
A. plot of $E_{n} r_{n} / E_{1} r_{1}$ as a function of n is
a straight line of slope 0 .
B. plot of $r_{n} v_{n} / r_{1} v_{1}$ as a function of n is a
straight line of slope 1.
C. plot of $\ln \left(\frac{r_{n}}{r_{1}}\right)$ as a function of $\ln (\mathrm{n})$ is
a straight line of slope 2.
D. plot of $\ln \left(\frac{r_{n} E_{1}}{E_{n} r_{1}}\right)$ as a function of $\ln (\mathrm{n})$
is a straight line of slope 4.

Answer: A::B::C::D

D Watch Video Solution

