びdoubtnut

PHYSICS

BOOKS - MTG-WBJEE PHYSICS

 (HINGLISH)

 (HINGLISH)}

GRAVITATION

Wb Jee Workout Single Option Correct Type

1. The largest and the shortest distance of the
earth from the sun are r_{1} and r_{2}. Its distance
from the sun when it is at perpendicular to
the major -axis of the orbit drawn from the sun is

$$
\begin{aligned}
& \text { A. } \frac{\eta+\eta_{2}}{4} \\
& \text { B. } \frac{\eta+\eta_{2}}{\eta_{1}-\eta_{2}} \\
& \text { C. } \frac{2 \eta r_{1} r_{2}}{r_{1}+r_{2}} \\
& \text { D. } \frac{r_{1}+r_{2}}{3}
\end{aligned}
$$

Answer: C

D View Text Solution
2. Imagine a new planet having the same density as that of earth but it is 3 times bigger
than the earth in size. If the acceleration due to gravity on the surface of earth is g and that on the surface of the new planet is g^{\prime}, then

$$
\text { A. } g^{\prime}=\frac{g}{9}
$$

B. $g=27 \mathrm{~g}$
C. $g^{\prime}=9 g$
D. $g^{\prime}=3 g$

View Text Solution

3. The density of a newly discovered planet is twice that of earth. The acceleration due to gravity at the surface of the planet is equal to that at the surface of the earth. If the radius of the earth R_{e}, the radius of the planet would be
A. $2 R_{e}$
B. $4 R_{e}$
C. $\frac{1}{4} R_{e}$

D. $\frac{1}{2} R_{e}$

Answer: D

D View Text Solution

4. Sun is about 330 times heavier and 100
times bigger in radius than earth. The ratio of mean density of the sun to that of earth is
A. 3.3×10^{-6}
B. 3.3×10^{-4}
C. 3.3×10^{-2}
D. 1.3

Answer: B

D View Text Solution

5. Two spheres of masses m and M are situated in air and the gravitational force between them is F. The space around the masses is now filled with a liquid of specific gravity 3. The gravitational force will now be
A. 3 F
B. F
C. $F / 3$
D. $F / 9$

Answer: B

D View Text Solution

6. The acceleration due to gravity on the planet A is 9 times the acceleration due to gravity on planet B. A man jumps to a height
of 2 m on the surface of A. What is the height of jump by the same person on the planet B ?
A. $(2 / 9) \mathrm{m}$
B. 18 m
C. 6 m
D. $(2 / 3) \mathrm{m}$

Answer: B

D View Text Solution
7. With what velocity should a particle be projected so that is height becomes equal to radius of earth ?
A. $\left(\frac{G M}{R}\right)^{3 / 2}$
B. $\left(\frac{8 G M}{R}\right)^{1 / 2}$
c. $\left(\frac{2 G M}{R}\right)^{1 / 2}$
D. $\left(\frac{4 G M}{R}\right)^{1 / 2}$

Answer: A
8. For a planet having mass equal to mass of
the earth but radius is one fourth of radius of
the earth. Then escape velocity for this planet will be
A. $11.2 \mathrm{~km} / \mathrm{s}$
B. $22.4 \mathrm{~km} / \mathrm{s}$
C. $5.6 \mathrm{~km} / \mathrm{s}$
D. $44.8 \mathrm{~km} / s$

Answer: B

D View Text Solution

9. If the earth of radius R , while rotating with angular velocity to become standstill, what will be the effect on the weight of a body of mass m at a latitude of 45° ?
A. remains unchanged
B. decreases by $R \omega^{2}$
C. increases by $R \omega^{2}$
D. increases by $R \omega^{2} / 2$

Answer: D

D View Text Solution

10. The period of revolution of planet A around
the sun is 8 times that of B. The distance of A
from the sun is how many times greater than
that of B from the sun ?
A. 4
B. 5
C. 2
D. 3

Answer: A

D View Text Solution

11. What will be the formula of mass of the earth in terms of g, R and G ?
A. $\mathrm{G} \frac{R}{g}$
B. g $\frac{R^{2}}{G}$
C. $\mathrm{g}^{2} \frac{R}{G}$
D. $\mathrm{G} \frac{g}{R}$

Answer: B

D View Text Solution

12. A ball is dropped from a spacecraft revolving around the earth at a height of 120 km. What will happen to the ball ?
A. it will fall down to the earth gradually
B. it will go very far in the space
C. it will continue to move with the same
speed along the original orbit of
spacecraft
D.it will move with the same speed, tangentially to the spacecraft.

Answer: C

- View Text Solution

13. The acceleration due to gravity g and mean
density of the earth ρ are related by which of
the following relations ? (Where G is the gravitational constant and R is the radius of the earth .)

$$
\begin{aligned}
& \text { A. } \rho=\frac{3 g}{4 \pi G R} \\
& \text { B. } \rho=\frac{3 g}{4 \pi G R^{3}} \\
& \text { C. } \rho=\frac{4 \pi g R^{2}}{3 G} \\
& \text { D. } \rho=\frac{4 \pi g R^{3}}{3 G}
\end{aligned}
$$

14. The earth (mass $=6 \times 10^{4} \mathrm{~kg}$) revolves around the sun with an angular velocity of $2 \times 10^{-2} \mathrm{rad} / \mathrm{s}$ in a circular orbit of radius $1.5 \times 10^{8} \mathrm{~km}$. The force excerted by the sun on the earth in newton, is
A. 36×10^{21}
B. 27×10^{39}
C. zero

D. 18×10^{25}

Answer: A

D View Text Solution

15. The radius of earth is about 6400 km and
that of mars is 3200 km . The mass of the earth
is about 10 times mass of mars. An object
weighs 200 N on the surface of earth. Its
weight on the surface of mars will be
A. 20 N
B. 8 h

C. 80 N

D. 40 N

Answer: C

D View Text Solution

16. If the earth shrinks such that its mass does not change but radius decreases to one quarter of its original value then one complete day will take.
A. 96 h
B. 48 h
C. 6 h
D. 1.5 h

Answer: D

D View Text Solution

17. If the gravitational force between two objects were proportional to $1 / R$ (and not as $1 / R^{2}$), where R is the distance between them,
then a particle in a circular path (under such a
force) would have its orbital speed v, proportional to
A. remains unchanged
B. R_{0} (independent of R)
C. $1 / R^{2}$
D. $1 / R$

Answer: B

D View Text Solution
18. A satellite A of mass m is at a distance of r from the surface of the earth. Another satellite
B of mass $2 m$ is at a distance of $2 r$ from the
the earth's centre. Their time periods are in
the ratio of
A. $1: 2$
B. 1: 16
C. 1:32
D. $1: 2 \sqrt{2}$

View Text Solution

19. The mean radius of earth is R, its angular speed on its own axis is ω and the acceleration due to gravity at earth's surface is g. What will be the radius of the orbit of a geostationary satellite?

$$
\begin{aligned}
& \text { A. }\left(R^{2} g \omega /\left(\omega^{2}\right)^{1 / 3}\right. \\
& \text { B. }\left(R g \omega /\left(\omega^{2}\right)^{1 / 3}\right. \\
& \text { C. }\left(R^{2} \omega^{2} / \omega^{2}\right)^{1 / 3} \\
& \text { D. }\left(R^{2} g / \omega\right)^{1 / 3}
\end{aligned}
$$

Answer: A

D View Text Solution

20. The satellite of mass m is orbiting around
the earth in a circular orbit with a velocity
v.What will be its total energy?
A. $(3 / 4) m v^{2}$
B. $(1 / 2) m v^{2}$
C. $m v^{2}$
D. $(1 / 2) m v^{2}$

Answer: D

D View Text Solution

21. Orbit of a planet around a star is

A. an ellipse

B. a circle
C. a parabola

D. a byperbola

22. The time period of a simple pendulum on a freely revolving artificial satellite is
A. Infinite
B. 24 hour
C. 27 day
D. Zero

Answer: A
23. If the earth were to suddenly contract to $\frac{1}{n}$ th of its present radius without any change in its mass, the duration of the new day will be nearly
A. $\frac{24}{n} h$
B. 24 n b
C. $\frac{24}{n^{2}} h$
D. $24 n^{2} h$

Answer: C

D View Text Solution

24. The gravitational field due to a mass
distribution is $E=\frac{K}{x^{3}}$ in the x -direction (K is
a constant). Taking the gravitational potential
to be zero at infinity, its value at a distance x is

$$
\begin{aligned}
& \text { A. } \frac{K}{x} \\
& \text { B. } \frac{K}{x^{2}} \\
& \text { C. } \frac{K}{2 x^{2}}
\end{aligned}
$$

D. $\frac{K}{3 x^{2}}$

Answer: C

D View Text Solution

25. A small satellite is revolving near earth's
surface. Its orbital velocity will be nearly
A. $11.2 \mathrm{~km} / \mathrm{s}$
B. $8 \mathrm{~km} / s$
C. $6 \mathrm{~km} / \mathrm{s}$
D. $4 \mathrm{~km} / \mathrm{s}$

Answer: B

D View Text Solution

26. The distance of a geo-stationary satellite
from the centre of the earth is nearest to
(where $\mathrm{R}=6400 \mathrm{~km}$)
A. 5 R
B. 7 R

C. 10 R

D. 18 R

Answer: B

D View Text Solution
27. The acceleration due to gravity near the
surface of a planet of radius R and density d is
proportional to
A. d / R^{2}
B. $d R^{2}$
C. $d R$
D. d / R

Answer: C

D View Text Solution

28. The kinetic energy needed to project a
body of mass m from the surface of earth
(radius R) to infinity is
A. $\frac{m g R}{4}$
B. 2 mgR
C. mgR
D. $\frac{m g R}{4}$

Answer: C

D View Text Solution
29. A spherical planet far out in space has a mass M_{0} and diameter D_{0}. A particle of mass
m falling freely near the surface of this planet
will experience an acceleration due to gravity which is equal to
A. $G M_{0} / D^{2}$
B. $4 m G M_{0} / D_{0}^{2}$
C. $4 G M_{0} / D_{0}^{2}$
D. $G m M_{0} / D_{0}^{2}$

Answer: C

D View Text Solution
30. Average distance of the earth from the sun
is L_{1}. If one year of the earth=D days, one year of another planet whose average distance from the sun is L_{2} will be

$$
\begin{aligned}
& \text { A. } D\left(\frac{L_{2}}{L_{1}}\right)^{1 / 2} \text { days } \\
& \text { B. } D\left(\frac{L_{2}}{L_{1}}\right)^{3 / 2} \text { days } \\
& \text { C. } D\left(\frac{L_{2}}{L_{1}}\right)^{2 / 3} \text { days } \\
& \text { D. } D\left(\frac{L_{2}}{L_{1}}\right) \text { days }
\end{aligned}
$$

Answer: B

Wb Jee Workout Category 2 Single Option

 Correct Type1. The earth is assumed to be a sphere of radius R. A platform is arranged at a height R
from the surface of the earth. The escape velocity of a body from this platform is fv, where v is its escape velocity from the surface of the earth. The value of f is
A. $1 / 2$
B. $\sqrt{2}$
C. $1 / \sqrt{2}$
D. $1 / 3$.

Answer: C

D View Text Solution

2. For a satellite moving in an orbit around the

 earth, the ratio of kinetic energy to potential energy isA. $1 / 2$
B. $1 / \sqrt{2}$
C. 2
D. $\sqrt{2}$

Answer: A

D View Text Solution

3. The escape velocity of a sphere of mass m is
constant, $\mathrm{M}=$ Mass of the earth and $R_{e}=$ Radius of the earth)

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{2 G M m}{R_{e}}} \\
& \text { B. } \sqrt{\frac{2 G M}{R_{e}}} \\
& \text { C. } \sqrt{\frac{G M}{R_{e}}} \\
& \text { D. } \sqrt{\frac{2 G M m+R_{e}}{R_{e}}}
\end{aligned}
$$

Answer: B
4. The escape velocity of a body on the surface of the earth is $11.2 \mathrm{~km} / \mathrm{s}$ If the earth's mass increases to twice its present value and radius of the earth becomes half, the escape velocity becomes
A. $22.4 \mathrm{~km} / s$
B. $44.8 \mathrm{~km} / s$
C. $5.6 \mathrm{~km} / \mathrm{s}$
D. $11.2 \mathrm{~km} / \mathrm{s}$
5. Two particles of equal mass go around a circle of radius R under the action of their mutual gravitational attraction. The speed v of earth particle is
A. $\frac{1}{3} \sqrt{\frac{G m}{R}}$
B. $\frac{1}{2} \sqrt{\frac{G m}{R}}$
C. $\frac{1}{2} \sqrt{\frac{R}{G m}}$
D. $\sqrt{\frac{G m}{R}}$

Answer: D

D View Text Solution

6. A satellite in force free space sweeps
stationary interplanetary dust at a rate of
$d M / d t=\alpha v$, where M is mass and v is the speed of satellite and α is a constant. The acceleration of satellite is
A. $\frac{-\alpha v^{2}}{2 M}$
B. $-\alpha v^{2}$
C. $\frac{-2 \alpha v^{2}}{M}$
D. $\frac{-\alpha v^{2}}{M}$

Answer: D

D View Text Solution

7. The weight of a body on surface of earth is
12.6 N . When it is raised to a height half the radius of earth, its weight will be
A. 2.8 N
B. 5.6 N
C. 12.6 N
D. 25.2 N

Answer: B

D View Text Solution

8. If g is the acceleration due to gravity on the
surface of the earth, the gain in potential energy of an object of mass m raised from the
earth's surface to a height equal to the radius
R of the earth is

A. $\frac{m g R}{4}$
B. $\frac{m g R}{2}$
C. mgR
D. 2 mgR

Answer: B

D View Text Solution
9. v_{e} and v_{p} denote the escape velocities from
the earth and another planet having twice the
radius and the same mean density as that of
the earth. Then

$$
\begin{aligned}
& \text { A. } v_{e} v_{p} / 2 \\
& \text { B. } v_{e}=v_{p} \\
& \text { C. } v_{e}=2 v_{p} \\
& \text { D. } v_{e}=\frac{p}{4}
\end{aligned}
$$

Answer: A
10. A planet moves around the sun. At a given point P, it is closest from the sun at a distance
d_{1} and has a speed v_{1}. At another point Q ,
when it is farther from the sun at a distance
d_{2}, its speed will be

$$
\begin{aligned}
& \text { A. } \frac{d_{1}^{2}}{d_{2}^{2}} v_{1} \\
& \text { B. } \frac{d_{2}}{d_{1}} v_{1} \\
& \text { C. } \frac{d_{2}^{2}}{d_{1}^{2}} v_{1} \\
& \text { D. } \frac{d_{1} v_{1}}{d_{2}}
\end{aligned}
$$

Answer: D

D View Text Solution

11. The ratio of radii of planets A and B in K_{1}
and ratio of accelerations due to gravity on
them is K_{2}. The ratio of escape velocities from
them will be
A. $K_{1} K_{2}$
B. $\sqrt{K_{1} K_{2}}$
C. $\sqrt{\frac{K_{1}}{K_{2}}}$
D. $\sqrt{\frac{K_{2}}{K_{1}}}$

Answer: B

D View Text Solution

12. Two planets at mean distances d_{1} and d_{2}
from the sun have their frequencies n_{1} and n_{2}
respectively. Then

$$
\begin{aligned}
& \text { A. } n_{1}^{2} d_{1}^{2}=n_{2}^{2} d_{2}^{2} \\
& \text { B. } n_{2}^{2} d_{2}^{3}=n_{1}^{2} d_{1}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } n_{1} d_{1}^{2}=n_{2} d_{2}^{2} \\
& \text { D. } n_{1}^{2} d_{1}=n_{2}^{2} d_{2}
\end{aligned}
$$

Answer: B

D View Text Solution

13. If the density of earth is doubled keeping
its radius constant then acceleration due to
gravity will be $\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. $19.6 \mathrm{~m} / s^{2}$
B. $9.8 \mathrm{~m} / s^{2}$
C. $4.9 \mathrm{~m} / \mathrm{s}^{2}$
D. $2.45 \mathrm{~m} / s^{2}$

Answer: A

D View Text Solution

14. A satellite of mass m revolves around the earth of radius R at a height x from its surface.

If g is the acceleration due to gravity on the
surface of the earth, the orbital speed of the satellite is
A. $g x$
B. $\frac{g R}{R-x}$
C. $\frac{g R^{2}}{R+x}$
D. $\left(\frac{g R^{2}}{R+x}\right)^{1 / 2}$

Answer: D
15. A solid sphere of uniform density and radius R applies a gravitational force of attraction equal to F_{1} on a particle placed at P, distance $2 R$ from the centre O of the sphere.

A spherical cavity of radius $R / 2$ is now made in the sphere as shown in given figure. The sphere with cavity now applies a gravitational force F_{2} on same particle placed at P. The ratio
F_{2} / F_{1} will be

A. $1 / 2$
B. $7 / 9$
C. 3
D. 7

Answer: B

- View Text Solution

Wb Jee Workout Category 3 One Or More Than One Option Correct Type

1. Two satellites of earth, S_{1} and S_{2} are moving
in the same orbit. The mass of S_{1} is four times
the mass of S_{2}. Which one of the following stetements is true ?
A. The potential energies fo earth and satellite in the two cases are equal.
B. S_{1} and S_{2} are moving with the same

speed.

C. The kinetic energies of the two satellites
are equal.
D. The time period of S_{1} is four times that of S_{2}.

Answer: B

D View Text Solution

2. A body of mass m is placed on earth surface

which is taken from earth surface to a height of $h=3 R$, then change in gravitational potential energy is

$$
\begin{aligned}
& \text { A. } \frac{m g R}{4} \\
& \text { B. } \frac{2}{3} m g R \\
& \text { C. } \frac{3}{4} m g R \\
& \text { D. } \frac{3}{4} m g R
\end{aligned}
$$

Answer: C

3. The change in the gravitational potential energy when a body of mass m is raised to a height $n R$ above the surface of the earth is (here R is the radius of the earth)
A. $\left(\frac{n}{n+1}\right) m g R$
B. $\left(\frac{n}{n-1}\right) m g R$
C. nmgR
D. $\frac{m g R}{n}$

Answer: A

- View Text Solution

4. A cavity of radius R / 2 is made inside a solid sphere of radius R. The centre of the cavity is
located at a distance $R / 2$ from the centre of
the sphere. The gravitational force on a particle of mass m at a distance $R / 2$ from the centre of the sphere on the line joining both the centre of the cavity)
[Here $\mathrm{g}=(G M) / R^{2}$, where M is the mass of
the sphere

$$
\begin{aligned}
& \text { A. } \frac{m g}{2} \\
& \text { B. } \frac{3 m g}{8} \\
& \text { C. } \frac{m g}{16} \\
& \text { D. none of these }
\end{aligned}
$$

Answer: B

D View Text Solution
5. Two astronauts have deserted their spaceship in a region of space far from the gravitational attraction of any other body.

Each has a mass of 100 kg and they are 100 m apart. How long will it be before the relative to one another. How long will it be before the gravitational attraction brings them 1 cm closer together?
A. 2.52 days
B. 1.41 days
C. 0.70 days

D. 1.41s

Answer: B

D View Text Solution

6. Which of the following statements are true about acceleration due to gravity?
A. g decreases in moving away from the centre if $r>R$
B. g decreases in moving away from the centre if $<R$
C. g is zero at the centre of earth
D. g decreases if earth stops rotating on its
axis

Answer: A::C

D View Text Solution

7. If both the mass and radius of the earth decreases by 1%, the value of
A. acceleration due to gravity would
decrease by nearly 1%
B. acceleration due to gravity would
increase by 1%
C. escape velocity from the earth's surface
would decrease by 1%

D. the gravitational potential energy of a

body on earth's surface will remain unchanged.

Answer: B::D

D View Text Solution

8. A small mass m is moved slowly from the surface of the earth to a height h above the surface. The work done (by an external agent) in doing this is
A. mgh , for all values of h
B. mgh , for $h \ll R$
C. $1 / 2 \mathrm{mgR}$ for $\mathrm{h}=\mathrm{R}$
D. $-1 / 2 \mathrm{mgR}$ for $\mathrm{h}=\mathrm{R}$

Answer: B::C

D View Text Solution

9. Consider two satellites A and B of equal mass m , moving in the same circular orbit about the earth, but in opposite sense as
shown in figure. The orbital radius is R. The satellite undergo a collision which is perfectly inelastic. For this situation, mark out the correct statements. [Take mass of earth as M]

A. The total energy of the satellite plus
earth's system before collision is
$-(G M m) / r$.
B. The total energy of the two satellites
plus earth system just after collision is
$-(2 G M m) / r$.
C. The total energy of the two satellites
plus earth system just after collision
$-(G M m) / 2 r$.
D. The combined mass (two satellites) will
fall towards the earth just after collision.

Answer: A::B::D

10. The height vertically above the earth's surface at which the acceleration due to gravity becomes 1% of its value at the surface is (R is the radius of the earth)
A. 8 R
B. $9 R$
C. 10R
D. 20R

- View Text Solution

Wb Jee Previous Years Questions Category 1 Single Option Correct Type

1. A mass M at rest is broken into two pieces
having masses m and ($M-m$). The two masses are then separated by a distance r . The gravitational force between them will be maximum when the ratio of the masses [m : (M-m) of the two parts is
A. 1:1
B. 1:2
C. 1:3
D. 1:4

Answer: A

- View Text Solution

2. A planet moves around the sun in an elliptical orbit with the sun at one of its foci.

The physical quantity associated with the
motion of the planet that remains constant with time is
A. velocity
B. centripetal force
C. linear momentum

D. angular momentum

Answer: D

D View Text Solution
3. An artificial satellite moves in a circular orbit around the earth. Total energy of the satellite
is given by E . The potential energy of the satellite is
A. $-2 E$
B. 2 E
C. $2 e / 3$
D. $-2 e / 3$

Answer: B
4. Two particles of mass m_{1} and m_{2}, approach each other due to their mutual gravitational attraction only. Then
A. acceleration of both the particles are equal.
B. acceleration of the particle of mass m_{1}
is proportional to m_{1}
C. acceleration the particle of mass m_{1} is

D. accelaration of the particle of mass m_{1}

 is inversely proportional to m_{1}.
Answer: C

D View Text Solution

5. A satellite has kinetic energy K, potential energy V and total energy E . Which of the following statements is true ?
A. $K=-V / 2$
B. $K=V / 2$
C. $E=-K / 2$

$$
\text { D. } E=-K / 2
$$

Answer: A

D View Text Solution

6. The ratio of accelerations due to gravity $g_{1}: g_{2}$ on the surface of two planets is $5: 2$ and the ratio of their respective average densities $\rho_{1}: \rho_{2}$ is $2: 1$. What is the ratio of respective
escape velocities $v_{1}: v_{2}$ from the surface of the planets?
A. $5: 2$
B. $\sqrt{5}: \sqrt{2}$
C. $5: 2 \sqrt{2}$
D. 25: 4

Answer: C

D View Text Solution
7. Assume that the earth moves around the
sun in circular orbit of radius R and there exists a planet which also moves around the sun in a circular orbit with an radius of the orbit of the planet is
A. $2^{-2 / 3} R$
B. $2^{2 / 3} R$
C. $2^{-1 / 3} R$
D. $\frac{R}{\sqrt{2}}$

Answer: A

View Text Solution

