© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MTG-WBJEE PHYSICS

(HINGLISH)

MOTION OF CENTRE OF MASS,

CONNECTED SYSTEMS, FRICTION

Wb Jee Workout Category 1 Single Option Corred Type 1 Mark

1. A solid homogenous sphere of mass M and
radius r is moving on a rough horizontal
surface, partly rolling and partly sliding. During this kind of motion of this sphere
A. total kinetic energy is conserved
B. the angular momentlim of the sphere
about the point of contact with the plane is conserved
C. only the rotational kinetic energy about
the centre of mass is conserved

D. angular momentum about the centre of

mass of conserved.

Answer: B

D View Text Solution

2. A ring of mass m and radius r rotates about an axis passing through its centre and perpendicular to its plane with angular velocity ω. Its kinetic energy is
A. $\frac{1}{2} m r^{2} \omega^{2}$
B. $m r \omega^{2}$
C. $m r^{2} \omega^{2}$
D. $\frac{1}{2} m r \omega^{2}$

Answer: A

D View Text Solution
3. The speed of a homogenous solid sphere after rolling down an inclined plane of vertical height h from rest without sliding is
A. $\sqrt{\frac{10}{7} g h}$
B. $\sqrt{g h}$
C. $\sqrt{\frac{6}{5} g h}$
D. $\sqrt{\frac{4}{3} g h}$

Answer: A

D View Text Solution

4. The $A B C$ is a triangular plate of uniform
thickness. The sides are in the ratio shown in
the figure. $I_{A B}, I_{B C}$ and $l_{C A}$ are the moments
of inertia of the plate about $A B, B C$ and $C A$ respectively. Which one of the following relation is correct?

A. $I_{A B}+I_{B C}=I_{C A}$
B. $I_{C A}$ is maximum
C. $I_{A B}>I_{B C}$
D. $I_{B C}>I_{A B}$

Answer: D

D View Text Solution

5. O is the centre of an equilateral triangle

ABC. F_{1}, F_{2} and F_{3} are three forces acting
along the sides $A B, B C$ and $A C$ as shown in the
figure. What should be the magnitude of F_{3},
so that the total torque about O is

A. $\left(F_{1}+F_{2}\right)$
B. $2\left(F_{1}+F_{2}\right)$
C. $\left(F_{1}+F_{2}\right) / 2$
D. $\left(F_{1}-F_{2}\right)$
6. A thin circular ring of mass M and radius r is rotating about its axis with a constant angular velocity ω. Two objects each of mass m are attached gently to the opposite ends of a diameter of the ring. The ring will now rotate with an angular velocity

$$
\begin{aligned}
& \text { A. } \frac{\omega(M-2 m)}{M} \\
& \text { B. } \frac{\omega M}{M+2 m} \\
& \text { C. } \frac{\omega(M-2 M)}{M+2 m}
\end{aligned}
$$

D. $\frac{\omega M}{M+m}$

Answer: B

D View Text Solution

7. Three identical metal balls, each of the radius r are placed touching each other on a horizontal surface such that an equilateral triangle is formed when centres of three balls are joined. The centre ofthe mass of the system is located at
A. line joining centres of any two balls
B. centre of one of the balls
C. horizontal surface
D. horizontal surface

Answer: D

D View Text Solution

8. Consider a point P as the contact point of a wheel on ground which rolls on ground without slipping. Value of displacement of
point P when wheel completes half of rotation
(Ifradius of wheel is 1 m)
A. 2 m
B. $\sqrt{\pi^{2}+4 m}$
C. πm
D. $\sqrt{\pi^{2}+2} m$

Answer: B

D View Text Solution

9. A thin circular ring of mass Mand radius r is

rotating about its axis with a constant angular
velocity ω. Four objects each of mass m, are kept gently to the opposite ends of two perpendicular diameters of the ring. The angular velocity of the ring will be

$$
\begin{aligned}
& \text { A. } \frac{M \omega}{4 m} \\
& \text { B. } \frac{M \omega}{M+4 m} \\
& \text { C. } \frac{(M+4 m) \omega}{M} \\
& \text { D. } \frac{(M-4 m) \omega}{M+4 m}
\end{aligned}
$$

Answer: B

D View Text Solution

10. A uniform rod $A B$ of length I and mass m is
free to rotate about point A. The rod is
released from rest in the horizontal position.
Given that the moment of inertia of the rod about A is $m l^{2} / 3$, the initial angular
acceleration of the rod will be

A. $\frac{m g l}{2}$
B. $\frac{3}{2} g l$
C. $\frac{3 g}{2 l}$
D. $\frac{2 g}{3 l}$

Answer: C
11. A wheel has angular acceleration of 3.0
$\mathrm{rad} / \mathrm{sec}^{2}$ and an initial angular speed of 2.00
$\mathrm{rad} / \mathrm{sec}$. In a time of 2 sec it has rotated
through an angle (in radian) of
A. 10
B. 12
C. 4
D. 6

Answer: A

D View Text Solution

12. Two bodies have their moments of inertia I
and $2 l$ respectively about their axis of rotation.

If their kinetic energies of rotation are equal, their angular velocity will be in the ratio
A. $2: 1$
B. $1: 2$
C. $\sqrt{2}: 1$

D. $1: \sqrt{2}$

Answer: C

D View Text Solution

13. Force required to move a mass of 1 kg at rest on a horizontal rough plane ($\mu=0.1$ and $\left.g=9.8 m / s^{2}\right)$ is
A. $>0.98 N$
B. $<0.49 N$
C. $=0.49 N$
D. $<0.98 N$

Answer: A

D View Text Solution

14. Two point objects of masses 1.5 g and 2.5 g respectively are at a distance of 16 cm apart, the centre of gravity is at a distance x from the object of mass 1.5 g where x is
A. 10 cm
B. 6 cm
C. 13 cm
D. 3 cm

Answer: A

D View Text Solution

15. A boy of mass 40 kg is climbing on a vertical pole at a constant speed. If the coefficient of friction between his palms and
the pole is 0.8 and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, the horizontal
force that he is applying on the pole is
A. 300 N
B. 400 N
C. 500 N
D. 600 N

Answer: C

D View Text Solution
16. A box of mass 2 kg is placed on the roof of
a car. The box would remain stationary untill
the car attains a maximum acceleration.
Coefficient of static friction between the box and the roof of the car is 0.2 and $\mathrm{g}=10 \mathrm{~ms}^{-2}$.

This maximum acceleration of the car, for the box to remain stationary, is
A. $8 m s^{-2}$
B. $6 m s^{-2}$
C. $4 m s^{-2}$

D. $2 m s^{-2}$

Answer: D

D View Text Solution

17. A wheel having moment of inertia $2 \mathrm{~kg} \mathrm{~m}{ }^{2}$
about its vertical axis, rotates at the rate of 60
rpm about this axis. The torque which can
stop the wheel's rotation in one minute would be

$$
\text { A. } \frac{2 \pi}{15} N m
$$

B. $\frac{\pi}{12} N m$
C. $\frac{\pi}{15} N m$
D. $\frac{\pi}{18} N m$

Answer: C

D View Text Solution

18. The moment of inertia of a uniform circular disc of radius R and mass M about an axis passing from the edge of the disc and normal to the disc is
A. $M R^{2}$
B. $\frac{1}{2} M R^{2}$
C. $\frac{3}{2} M R^{2}$
D. $\frac{7}{2} M R^{2}$

Answer: C

D View Text Solution

19. One quarter sector is cut from a uniform circular disc ofradius R. This sector has mass
M. It is made to rotate about a line
perpendicular to its plane and passing through the centre of the original disc. Its moment of inertia about the axis of rotation is

A. $\frac{1}{2} M R^{2}$
B. $\frac{1}{4} M R^{2}$
C. $\frac{1}{8} M R^{2}$
D. $\sqrt{2} M R^{2}$

Answer: A

D View Text Solution

20. A circular platform is free to rotate in a horizontal plane about a vertical axis passing through its center. A tortoise is sitting at the edge of the platform. Now, the platform is given an angular velocity c.o0. When the
tortoise moves along the diameter of the platform with a constant velocity (with respect to the platform), the angular velocity of the platform $\omega(\mathrm{t})$ will vary with time t as

B.

C.

$\xrightarrow[\rightarrow]{\text { Den }}$

Answer: B

D View Text Solution

21. The moment of inertia of a solid sphere of
density P and radius R about its diameter is

$$
\begin{aligned}
& \text { A. } \frac{176 \pi R^{3}}{105} \\
& \text { B. } \frac{176 p R^{5}}{105} \\
& \text { C. } \frac{105 p R^{3}}{176} \\
& \text { D. } \frac{105 p R^{5}}{176}
\end{aligned}
$$

Answer: B

D View Text Solution

22. A stone of mass m tied to a string of
length I rotates along circumference of a circle with constant speed v. The torque on the stone is
A. zero
B. $m v^{2} \times l$
C. $\frac{m^{2} v}{l}$
D. $\frac{m v^{2}}{l}$

Answer: A

D View Text Solution

23. A thin wire of length I and mass m is turned into the form of a semicircle. Its moment of inertia about an axis joining its
free ends will be

A. $m \pi l^{2}$
B. $m l^{2} / \pi^{2}$
C. $\frac{m l^{2}}{2 \pi}$
D. $\frac{m l^{2}}{2 \pi^{2}}$

Answer: D

D View Text Solution

24. A thin rod of length I and mass m is turned at mid-point O at angle of 60°. The moment of inertia of the rod about an axis passing
through O and perpendicular to the plane of
the rod will be

A. $m l^{2} / 3$
B. $\frac{m l^{2}}{6}$
C. $\frac{m l^{2}}{8}$
D. $\frac{m l^{2}}{12}$

Answer: D

D View Text Solution

25. A thin hollow cylinder open at both ends
(i) Slides without rotating
(ii) Rolls without slipping, with the same speed.

The ratio of kinetic energies in the two cases is
A. $1: 1$
B. $4: 1$
C. 1:2
D. 2:1

Answer: C

D View Text Solution

26. A uniform rod of length I is placed with one end in contact with the horizontal and is then inclined at an angle a to the horizontal and allowed to fall, without slipping at contact
point. When it becomes horizontal, its angular velocity will be

$$
\begin{aligned}
& \text { A. } \omega=\sqrt{\frac{3 g \sin \alpha}{l}} \\
& \text { B. } \omega=\sqrt{\frac{2 l}{3 g \sin \alpha}} \\
& \text { C. } \omega=\sqrt{\frac{6 g \sin \alpha}{l}} \\
& \text { D. } \omega=\sqrt{\frac{l}{g \sin \alpha}}
\end{aligned}
$$

Answer: A

27. If a sphere is rolling, the ratio of the translational energy to total kinetic energy is given by
A. $7: 10$
B. 2:5
C. 10: 7
D. 5:7

Answer: D

D View Text Solution
28. Consider a body, shown in figure, consisting of two identical balls, each of mass
M connected by a light rigid rod. If an impulse $\mathrm{J}=\mathrm{MV}$ is imparted to the body at one of its ends, what would be its angular velocity?

A. V / L
B. $2 V / L$
C. $V / 3 L$

D. $V / 4 L$

Answer: A

D View Text Solution

29. The moment of inertia of a unifmm rod of mass M and length L about an axis through
centre and perpendicular to length L is given
by $\left(M L^{2} \frac{)}{12}\right.$. Now consider one such rod pivoted at its centre free to rotate in a vertical
plane. The rod is at rest in the vertical
position. A bullet of mass M moving horizontally at a speed V strikes and gets embedded in one end of the rod. The angular velocity CD of the rod after collision will be
A. V / L
B. $2 V / L$
C. $3 V / 2 L$
D. $6 \mathrm{~V} / \mathrm{L}$

Answer: C

30. If the earth were to suddenly contract to $\frac{1}{n} t h$ of its present size without any change in
its mass, the duration of the new day will be nearly
A. $24 / n$ hours
B. 24 n hours
C. $24 / n^{2}$ hours
D. $24 n^{2}$ hours

Diew Text Solution

Wb Jee Workout Category 2 Single Option

 Correct Type 2 Marks1. The moment of inertia of a body about a given axis is $1.2 \mathrm{~kg} m^{2} . \cdot$ Initially, the body is at rest. In order to produce a rotational kinetic energy of 1500 J , an angular acceleration of 25 rad / s^{2} must be applied about that axis for a duration of
A. 4 s
B. 2s
C. 8 s
D. 10 s

Answer: B

D View Text Solution

2. A thin and circular disc of mass m and radius R is rotating in a horizontal plane about an axis passing through its centre and perpendicular to its plane with an angular
velocity ω. If another disc of same dimension but mass ml 4 is placed gently on the first disc co-axially, then the new angular velocity of the system is
A. $5 \omega / 4$
B. $2 \omega / 3$
C. $4 \omega / 5$
D. $3 \omega / 2$

Answer: C

3. A circular disc is to be made by using iron and aluminium so that it acquires maximwn moment of inertia about geometrical axis. It is possible with

A. aluminium at interior and iron

surrounding it
B. iron at interior and aluminium
surrounding it

C. using iron and aluminium layers in

alternate order

D. sheet of iron is used at both external

surface and aluminium sheet as internal
layers.

Answer: A

- View Text Solution

4. A disc is rotating with angular speed CD. If a child sits on it, what is conserved
A. linear momentum
B. angular momentum
C. kinetic energy
D. potential energy

Answer: B

D View Text Solution
5. A solid cylinder of mass M and radius R rolls
without slipping down an inclined plane of length L and height h. What is the speed of its centre of mass when the cylinder reaches its bottom?
A. $\sqrt{2 g h}$
B. $\sqrt{\frac{3}{4} g h}$
C. $\sqrt{\frac{4}{3} g h}$
D. $\sqrt{4 g h}$

Answer: C
6. From a circular disc of radius R and mass $9 M$, a small disc of radius $R / 3$ is removed from
the disc. The moment of inertia of the remaining disc about an axis perpendicular to
the plane of the disc and passing through O is

A. $4 M^{2}$
B. $\frac{40}{9} M R^{2}$
C. $10 M R^{2}$
D. $\frac{37}{9} M R^{2}$

Answer: A

D View Text Solution

7. A solid sphere of mass M, radius R and having moment of inertia about an axis passing through the centre of mass as J, is recast into a disc of thickness t, whose moment of inertia about an axis passing through its edge and perpendicular to its plane remains J. Then, radius of the disc will be

> A. $\frac{2 R}{\sqrt{15}}$
> B. $R \sqrt{\frac{2}{15}}$
> C. $\frac{4 R}{\sqrt{15}}$
> D. $\frac{R}{4}$

Answer: A

D View Text Solution
8. A cord is wound round the circumference of
a wheel of radius r. The axis of the wheel is
horizontal and its moment of inertia about
this axis is I . A weight mg is attached to the end of the cord and is allowed to fall from rest. The angular velocity of the wheel, when the weight has fallen through a distance h, is
A. $\left[\frac{2 g h}{l+m r}\right]^{1 / 2}$
B. $\left[\frac{2 m g h}{I+m r^{2}}\right]^{1 / 2}$
C. $\left[\frac{2 m g h}{1+2 m r^{2}}\right]^{1 / 2}$
D. $(2 g h)^{1 / 2}$

Answer: B
9. A tube of length L is filled completely with an incompressible liquid of mass M and closed at both the ends. The tube is then rotated in a horizontal plane about one of its ends with a uniform angular velocity ω. The force exerted by the liquid at the other end is
A. $\frac{M \omega^{2} L}{2}$
B. $M \omega^{2} L$
C. $\frac{M \omega^{2} L}{4}$
D. $\frac{M \omega^{2} L^{2}}{2}$

D View Text Solution

10. A body takes twice the time to slides down
a rough inclined plane at 45° to an identical
smooth inclined plane. What is the coefficient of friction of rough plane?
A. 0.75
B. 0.5
C. 0.25

D. 0.15

Answer: A

D View Text Solution

11. Two discs of moments of inertia l_{1} and l_{2}
and angular speeds ω_{1} and ω_{2} are rotating along collinear axes pass through their centre of mass and perpendicular to their plane. If
the two are made to rotate jointly along the
same axis, the rotational K.E. of system will be

> A. $\frac{\left(l_{1} \omega_{1}+l_{2} \omega_{2}\right)^{2}}{2\left(l_{1}+l_{2}\right)}$
> B. $\frac{\left(l_{1}+l_{2}\right)\left(\omega_{1}+\omega_{2}\right)}{2}$
> C. $\frac{\left(l_{1}+l_{2}\right)\left(\omega_{1}+\omega_{2}\right)}{2}$
D. None of these

Answer: A

D View Text Solution

12. A thin wire of length L and uniform linear mass density p is bent into a circular loop with centre at O as shown. The moment of inertia

Answer: D
13. A particle of mass $m=5$ units is moving with a uniform speed $v=3 \sqrt{2}$ units in the XOY plane along the line $Y=X+4$. The magnitude of the angular momentum of the particle about the origin is
A. 60 units
B. $40 \sqrt{2}$ units
C. zero
D. 7.5 units

Answer: A

D View Text Solution

14. Four spheres each having mass m and radius r are placed with their centres on the four comers of a square of side a. Then the moment of inertia of the system about an axis along one of the sides of the square, is
A. $\frac{8}{5} m r^{2}$
B. $\frac{8}{5} m r^{2}+2 m a^{2}$
C. $\frac{4}{5} m r^{2}+2 m a^{2}$
D. $\frac{4}{5} m r^{2}+4 m a^{2}$

Answer: B

D View Text Solution

15. A circular disc rolls down on an inclined
plane without slipping. What fraction of its
total energy to translational?
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{5}{7}$
D. $\frac{7}{5}$

Answer: A

D View Text Solution

16. The moment of inertia of a thin square
plate $A B C D$, as shown A in the figure, of uniform thickness about an axis passing through the centre O and perpendicular to
the plane of

A. $l_{1}+l_{2}$
B. $l_{3}+l_{4}$
C. $l_{1}+l_{3}$
D. $l_{1}+l_{2}+l_{3}+l_{4}$ ItbRgt where l_{1}, l_{2}, l_{3}
and l_{4} are respectively the moments of inertia about axis $1,2,3$ and 4 which are in the plane of the plate.

Answer: A::B::C

D View Text Solution

17. A particle of mass m is projected with a velocity v making an angle of 45° with the horizontal. The magnitude of the angular
momentum of the projectile about the point of projection, when the particle is at its maximum height h, is
A. zero
B. $\frac{m v^{3}}{4 \sqrt{2} g}$
C. $\frac{m v^{3}}{\sqrt{2} g}$
D. $m \sqrt{2 g h^{3}}$

Answer: B::D

D View Text Solution
18. A man stands at the centre of a circular table with his two hands outstretched. The table is set into rotation with an angular speed of $40 \mathrm{rev} / \mathrm{min}$. What is the angular speed when the man folds his hands back and thereby reduces his moment of inertia 2/5 times the initial value? Assume that the table rotates without friction.
A. A) 100 rpm
B. B) 150 rpm
C. C) 50 rpm

D. D) 75 rpm

Answer: A

D Watch Video Solution

19. A small sphere S of radius, r and mass m rolls without slipping, inside a large
hemispherical bowl B of radius R as shown in
figure. S starts from rest at the top point of
the hemisphere

A. The fraction of translational kinetic
energy at the sphere is $5 / 7$.
B. The fraction of rotational kinetic energy
of the sphere is $2 / 7$.
C. The fraction of rotational kinetic energy
of the sphere is $\frac{2}{7} m v^{2}$.
D. The total kinetic energy of the sphere at
the bottom of the bowl is $\frac{2}{7} m v^{2}$

Answer: A::B::C

D View Text Solution

20. The torque $\vec{\tau}$ on a body about a given point is found to be equal to \vec{A} and \vec{L} where \vec{A} is a constant vector, and \vec{L} is the angular momentum of the body about that point.

From this it follows that
A. $\frac{d \vec{L}}{d t}$ is perpendicular to \vec{L} at all
instants of time
B. the component of \vec{L} in the direction of

A does not change with time.
C. the magnitude of \vec{L} does not change
with time.
D. \vec{L} does not change with time.

Answer: A::B::C

21. A small block of mass of 0.1 kg lies on a
fixed inclined plane PQ which makes an angle θ
with the horizontal. A horizontal force of 1 N
acts on the block through its center of mass
as shown in the figure. The block remains
stationary if (take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

A. $\theta=45^{\circ}$
B. $\theta>45^{\circ}$ and a frictional force acts on
the block towardsP.
C. $\theta>45^{\circ}$ and a frictional force acts on
the block P towards Q .
D. $\theta<45^{\circ}$ and a frictional force acts on
the block towards Q.

Answer: A::C

D View Text Solution
22. A uniform bar of length 6 a and mass 8 m
lies on a smooth horizontal table. Two point masses m and 2 m moving with the same horizontal speed 2 v and v respectively, strike the bar as shown in the figure and stick to the bar after collision. Denoting angular velocity (about the centre of mass), total energy, and centre of mass velocity after collision by ω, E
and v_{C} respectively, we have after collision

A. $v_{C}=0$
B. $\omega=\frac{3 v}{5 a}$
C. $\omega=\frac{v}{5 a}$
D. $E=\frac{3 m v^{2}}{5}$

Answer: A::C::D

D View Text Solution

23. A fly wheel having a moment of inertia of
$10^{7} \mathrm{gcm}^{2}$ and revolving at the rate of 120 rpm
is stopped by a brake in course of 5 seconds.

Find the controlling torque.
A. 2.51×10^{7} dyne-cm
B. 5.21×10^{7} dyne-cm
C. 1.25×10^{7} dyne-cm

D. 2.15×10^{5} dyne-cm

Answer: A

D View Text Solution

24. A bucket of water of mass 21 kg is suspended by a rope wrapped around a solid cylinder 0.2 m in diameter. The mass of the solid cylinder is 21 kg . The bucket is released from rest. Which of the following statement(s) is/are correct?
A. The tension in the rope is 70 N .
B. The acceleration of the bucket is (20/3)
$\mathrm{m} / \mathrm{s}^{2}$
C. The acceleration of the bucket is independent of the mass of the bucket.
D. The tension in the rope is 50 N .

Answer: A::B::C

D View Text Solution

25. A massless spool of inner radius r, outer radius R is placed against vertical wall and
tilted split floor as shown. A light inextensible thread is tightly wound around the spool
through which a mass m is hanging. There exists no friction at point A, while the coefficient of friction between spool and point

B is μ. The angle between two surface is θ.

A. The magnitude of force on the spool at
B in order to maintain equilibrium is
$m g \sqrt{\left(\frac{r}{R}\right)^{2}+\left(1-\frac{r}{R}\right)^{2} \frac{1}{\tan ^{2} \theta}}$
B. The magnitude of force on the spool at
B in order to maintain equilibrium is mg

$$
\left(1-\frac{r}{R}\right) \frac{1}{\tan \theta}
$$

C. The minimum value of μ for the system $\cot \theta$
to remain in equilibrium is

$$
\overline{(R-r)-1}
$$

D. The minimum value of μ for the system
to remain in equilibrium is $\frac{\tan \theta}{(R-r)-1}$

- View Text Solution

Wb Jee Previous Years Questions

1. Four small objects each of mass m are fixed
at the comers of a rectangular wire-frame of negligible mass and of sides a and $b(a>b)$. If the wire frame is now rotated about an axis passing along the side of length b, then the moment of inertia of the system for this axis of rotation is
A. $2 m a^{2}$
B. $4 m a^{2}$
C. $2 m\left(a^{2}+b^{2}\right)$
D. $2 m\left(a^{2}-b^{2}\right)$

Answer: A

D View Text Solution
2. The velocity of a car travelling on a straight road is $36 \mathrm{~km} h^{-1}$ at an instant of time. Now travelling with uniform acceleration for 10 s ,
the velocity becomes exactly double. If the wheel radius of the car is 25 cm , then which of the following numbers is the closest to the number of revolutions that the wheel makes during this 10 s ?
A. 84
B. 95
C. 126
D. 135

Answer: B
3. A uniform solid spherical ball is rolling down
a smooth inclined plane from a height h. The velocity attained by the ball when it reaches
the bottom of the inclined plane is v. If the ball
is now thrown vertically upwards with the
same velocity v , the maximum height to which
the ball will rise is
A. $5 \mathrm{~h} / 8$
B. $3 \mathrm{~h} / 5$
C. $5 \mathrm{~h} / 7$
D. $7 \mathrm{~h} / 9$

Answer: C

D View Text Solution

4. A smooth massless string passes over a smooth fixed pulley. Two masses m 1 and $m_{2}\left(m_{1}>m_{2}\right)$ are tied at the two ends of the string. The masses are allowed to move under
gravity starting from rest. The total external force acting on the two masses is

$$
\begin{aligned}
& \text { A. }\left(m_{1}+m_{2}\right) g \\
& \text { B. } \frac{\left(m_{1}-m_{2}\right)^{2}}{m_{1}+m_{2}} g \\
& \text { C. }\left(m_{1}-m_{2}\right) g \\
& \text { D. } \frac{\left(m_{1}+m_{2}\right)^{2}}{m_{1}-m_{2}} g
\end{aligned}
$$

Answer: B

D View Text Solution

5. Two particles A and B are moving as shown
in the figure. Their total angular momentum about the point O is

A. $9.8 \mathrm{kgm}^{2} / s$
B. zero
C. $52.7 \mathrm{kgm}^{2} / \mathrm{s}$
D. $37.9 \mathrm{kgm}^{2} / \mathrm{s}$

Answer: A

D View Text Solution

6. A large number of particles are placed around the origin, each at a distance R from
the origin. The distance of the center of mass of the system from the origin is
A. $=R$
B. $\leq R$
C. $>R$

D. $\geq R$

Answer: B

D View Text Solution

7. Block B lying on a table weighs W. The coefficient of static friction between the block and the table is μ. Assume that the cord between B and the knot is horizontal. The maximum weight of the block A for which the
system will be stationary is

A. $\frac{W \tan \theta}{\mu}$
B. $\mu W \tan \theta$
C. $\mu W \sqrt{1+\tan ^{2} \theta}$
D. $\mu W \sin \theta$

Answer: B

- View Text Solution

8. Two bodies of masses m_{1} and m_{2} are separated by a distance R. The distance of the centre of mass of the bodies from the mass m_{1} is

$$
\begin{aligned}
& \text { A. } \frac{m_{2} R}{m_{1}+m_{2}} \\
& \text { B. } \frac{m_{1} R}{m_{1}+m_{2}} \\
& \text { C. } \frac{m_{1} m_{2}}{m_{1}+m_{2}} R \\
& \text { D. } \frac{m_{1}+m_{2}}{m_{1}} R
\end{aligned}
$$

Answer: A

D View Text Solution

9. Two particles A and B (both initially at rest)
start moving towards each other under a
mutual force of attraction. At the instant when
the speed of A is v and the speed of B is $2 v$, the
speed of the centre of mass is
A. zero
B. v
C. $\frac{3 v}{2}$
D. $-\frac{3 v}{2}$

Answer: A

D View Text Solution

10. A block of mass m_{2} is placed on a
horizontal table and another block of mass m_{1}
is placed on top of it. An increasing horizontal
force $F=$ at is exerted on the upper block but
the lower block never moves as a result. If the
coefficient of friction between the blocks is μ_{1}
and that between the lower block and the table is μ_{2}, then what is the maximum possible value of μ_{1} / μ_{2} ?

$$
\begin{aligned}
& \text { A. } \frac{m_{2}}{m_{1}} \\
& \text { B. } 1+\frac{m_{2}}{m_{1}} \\
& \text { C. } \frac{m_{1}}{m_{2}} \\
& \text { D. } 1+\frac{m_{1}}{m_{2}}
\end{aligned}
$$

Answer: B

11. A solid uniform sphere resting on a rough
horizontal plane is given a horizontal impulse
directed through its centre so that it starts
sliding with an initial velocity v_{0}. When it finally starts rolling without slipping the speed of its centre is
A. $\frac{2}{7} v_{0}$
B. $\frac{3}{7} v_{0}$
C. $\frac{5}{7} v_{0}$
D. $\frac{6}{7} v_{0}$

Answer: C

D View Text Solution

12. Three identical square plates rotate about
the axes shown in the figure in such a way that
their kinetic energies are equal. Each of the rotation axes passes through the centre of the square. Then the ratio of angular speeds
$\omega_{1}: \omega_{2}: \omega_{3}$ is

A. 1:1:1
B. $\sqrt{2}: \sqrt{2}: 1$
C. $1: \sqrt{2}: 1$
D. $1: 2: \sqrt{2}$

Answer: B

- View Text Solution

13. A mass of 1 kg is suspended by means of a
thread. The system is (i) lifted up with an
acceleration of $4.9 \mathrm{~ms}^{-2}$ (ii) lowered with an
acceleration of $4.9 \mathrm{~ms}^{-2}$. The ratio of tension
in the first and second case is
A. $3: 1$
B. 1:2
C. $1: 3$
D. 2:1
14. A bullet of mass $4.2 \times 10^{-2} \mathrm{~kg}$, moving at a speed of $300 \mathrm{~ms}^{-1}$, gets stuck into a block with a mass 9 times that of the bullet. If the block is free to move without any kind of friction, the heat generated in the process will be
A. 45 cal
B. 405 cal
C. 450 cal

D. 1701 cal

Answer: B

D View Text Solution

15. A solid spherical ball and a hollow spherical
ball of two different materials of densities p_{1}
and p_{2} respectively have same outer radii and same mass. What will be the ratio the moment of inertia (about an axis passing through the
centre) of the hollow sphere to that of the solid sphere?
A. $\frac{p_{2}}{p_{1}}\left(1-\frac{p_{2}}{p_{1}}\right)^{\frac{5}{3}}$
B. $\frac{p_{2}}{p_{1}}\left[1-\left(1-\frac{p_{2}}{p_{1}}\right)^{\frac{5}{3}}\right]$
C. $\frac{p_{2}}{p_{1}}\left(1-\frac{p_{1}}{p_{2}}\right)^{\frac{5}{3}}$
D. $\frac{p_{2}}{p_{1}}\left[1-\left(1-\frac{p_{1}}{p_{2}}\right)^{\frac{5}{3}}\right]$

Answer: D

D View Text Solution
16. A bar of length I canying a small mass m at one of its ends rotates with a uniform angular speed ω in a vertical plane about the midpoint of the bar. During the rotation, at some instant of time when the bar is horizontal, the mass is detached from the bar but the bar continues to rotate with same ω. The mass moves ve1tically up, comes back and reaches
the bar at the same point. At that place, the acceleration due to gravity is g .
A. this is possible if the quantity $\frac{\omega^{2} l}{2 \pi g}$ is an integer
B. the total time of flight of the mass is
proportional to ω^{2}
C. the total distance travelled by the mass
in air is proportional to ω^{2}
D. the total distance travelled by the mass
in air and its total time of flight are both
independent of its mass.
17. A circular disc rolls on a horizontal floor without slipping and the centre of the disc moves with a unifonn velocity v . Which of the following values the velocity at a point on the rim of the disc can have?
A. v
B. $-v$
C. 2 v

D. zero

Answer: A::C::D

- View Text Solution

