© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MTG-WBJEE PHYSICS

(HINGLISH)

OSCILLATIONS AND WAVES

Wb Jee Workout Category 1 Single Opton Correct Type 1 Mark

1. If the length of a simple pendulum is increased by 2%, then the time period
A. increases by 1%
B. decreases by 1%
C. increases by 2%
D. decreases by 2\%

Answer: A

D View Text Solution
2. A particle starts with S.H.M. from the mean
position as shown in the figure. Its amplitude is A and its time period is T . At any instant, its speed is half that of the maximum speed.

What is the displacement of the particle at the that point?

$$
\text { A. } \frac{2 A}{\sqrt{3}}
$$

$$
\begin{aligned}
& \text { B. } \frac{3 A}{\sqrt{2}} \\
& \text { C. } \frac{\sqrt{2} A}{3} \\
& \text { D. } \frac{\sqrt{3} A}{2}
\end{aligned}
$$

Answer: D

D View Text Solution

3. The bob of simple pendulum having length

1, is displaced from mean position to an angular position o with respect to vertical. If it
is released, then velocity of bob at equilibrium
position is
A. $\sqrt{2 g(1-\cos \theta)}$
B. $\sqrt{2 g(1+\cos \theta)}$
C. $\sqrt{2 g l \cos \theta}$
D. $\sqrt{2 g l}$

Answer: A

D View Text Solution
4. When an oscillator completes 100 oscillations its amplitude reduced to $1 / 3$ of initial value. What will be its amplitude, when it completes 200 oscillations?
A. $1 / 8$
B. $2 / 3$
C. $1 / 6$
D. $1 / 9$

Answer: D

5. In the figure S_{1} and S_{2} are identical springs.

The oscillation frequency of the mass m is f. If one spring is removed, the frequency will become

A. f
B. $f / \sqrt{2}$
C. $f \times 2$

D. $f \times \sqrt{2}$

Answer: B

D View Text Solution

6. A simple pendulum has a time period T_{1}
when on the earth's surface and T_{2} when
taken to a height R above the earth's surface
where R is the radius of the earth. The value of
T_{2} / T_{1} is
A. 1
B. $\sqrt{2}$
C. 4
D. 2

Answer: D

D View Text Solution

7. The displacemeent of a particle is given at
time $\quad \mathrm{t} \quad$ by $\quad x=A \sin (-2 \omega t)+B \sin ^{2} \omega t$.

Then,
A. the motion of the particle is SHM with
an amplitude of $\sqrt{A^{2}+\frac{B^{2}}{4}}$
B. the motion of the particle is not SHM,
but oscillatory with a time period of
$T=\frac{\pi}{\omega}$.
C. the motion of the particle is oscillatory
with a time period of $T=\frac{\pi}{2 \omega}$.
D. the motion of the particle is a not
periodic
8. Vibrating tuning fork of frequency v is placed near the open end of a long cylindrical tube. The tube has a side opening and is fitted with a movable reflecting piston. As the piston
is moved through 8.75 cm , the intensity of sound changes from a maximum to minimum,
if the speed of sound is $350 \mathrm{~m} / \mathrm{s}$. Then v is

A. 500 Hz
B. 1000 Hz
C. 2000 Hz
D. 4000 Hz

Answer: B
9. A hospital uses an ultrasonic scanner to
locate tumours in a tissue. The operating frequency of the scanner is 4.2 MHz . The speed of sound in a tissue is $1.7 \mathrm{~km} / \mathrm{s}$. The wavelength of sound in the tissue is close to

$$
\text { A. } 4 \times 10^{-3} \mathrm{~m}
$$

B. $8 \times 10^{-3} \mathrm{~m}$
C. $4 \times 10^{-4} \mathrm{~m}$
D. $8 \times 10^{-4} \mathrm{~m}$

Answer: C

D View Text Solution

10. A transverse wave is represented by the equation $y=y \frac{\sin (2 \pi)}{\lambda}(v t-x)$ For what value of λ, is the maximum particle velocity equal to two times the wave velocity?
А. $\lambda=\frac{\pi y_{0}}{2}$
B. $\lambda=\frac{\pi y_{0}}{3}$
C. $\lambda=2 \pi y_{0}$

$$
\text { D. } \lambda=\pi y_{0}
$$

Answer: D

D View Text Solution

11. Two stationary sources each emitting waves
of wavelength λ, an observer moves from one
source to another with velocity u. Then
number of beats heard by him is

$$
\text { A. } \frac{2 u}{\lambda}
$$

B. $\frac{\mu}{\lambda}$
C. $\sqrt{u \lambda}$
D. $\frac{u}{2 \lambda}$

Answer: A

D View Text Solution

12. A wave travelling in positive x-direction
with $\mathrm{a}=0.2 \mathrm{~m} / \mathrm{s}$. Velocity $=360 \mathrm{~m} / \mathrm{s}$. and $\lambda=60$
m, then correct expression for the wave is

$$
\begin{aligned}
& \text { A. } y=0.2 \sin \left[2 \pi\left(6 t+\frac{x}{60}\right)\right] \\
& \text { B. } y=0.2 \sin \left[\pi\left(6 t+\frac{x}{60}\right)\right] \\
& \text { C. } y=0.2 \sin \left[2 \pi\left(6 t-\frac{x}{60}\right)\right] \\
& \text { D. } y=0.2 \sin \left[\pi\left(6 t-\frac{x}{60}\right)\right]
\end{aligned}
$$

Answer: C

D View Text Solution

13. Two vibrating tuning forks produce waves given by $y_{1}=4 \sin 500 \pi t$ and $y_{2}=2 \sin 506 \pi t$. Number of beats produced per minute is
A. 360
B. 180
C. 60
D. 3

Answer: B

D View Text Solution

14. Two springs are joined and attached to a mass of 16 kg . The system is then suspended
vertically from a rigid support. The spring
constant of the two springs are K_{1} and K_{2}
respectively. The period of vertical oscillations of the system will be:

$$
\begin{aligned}
& \text { A. } \frac{1}{8 \pi} \sqrt{K_{1}+K_{2}} \\
& \text { B. } 8 \pi \sqrt{\frac{K_{1}+K_{2}}{K_{1} K_{2}}} \\
& \text { C. } \frac{\pi}{2} \sqrt{K_{1}-K_{2}} \\
& \text { D. } \frac{\pi}{2} \sqrt{\frac{K_{1}}{K_{2}}}
\end{aligned}
$$

Answer: B

D View Text Solution

15. The equation of a progressive wave can be given by $y=15 \sin (660 \pi t-0.02 \pi x) \mathrm{cm}$. The frequency of the wave is
A. 330 Hz
B. 342 Hz
C. 365 Hz
D. 660 Hz

Answer: A
16. Two stretched strings have lengths 1 and 21
while tensions are T and 4 T respectively. If
they are made of same material the ratio of
their frequency is
A. $2: 1$
B. $1: 2$
C. $1: 1$
D. 1: 4

Answer: C
17. When sound is produced in an aeroplane with a velocity of $200 \mathrm{~m} / \mathrm{s}$ horizontally its echo is heard after $10 \sqrt{5}$ seconds. If velocity of sound in air is $300 \mathrm{~ms}^{-1}$ the elevation of aircraft is
A. 250 m
B. $250 \sqrt{5} \mathrm{~m}$
C. 1250 m
D. 2500 m

Answer: D

D View Text Solution

18. Two turning forks of frequencies n_{1} and n_{2}
produces n beats per second. If n_{2} and n are known, n_{1}, may be given by

$$
\text { A. } \frac{n_{2}}{n}+n_{2}
$$

B. $n_{2} n$
C. $n_{2} \pm n$
D. $\frac{n_{2}}{n}-n_{2}$

Answer: C

D View Text Solution

19. A car moving with a velocity of $36 \mathrm{~km} / \mathrm{h}$ crosses a siren of frequency 500 Hz . The apparent frequency of siren after passing it will be
A. 530 Hz
B. 485 Hz
C. 540 Hz

D. 460 Hz

Answer: B

D View Text Solution

20. The function $\sin ^{2}(\omega t)$ represents
A. a periodic, but not simple harmonic motion with period $2 \pi / \omega$
B. a periodic, but not simple harmonic motion with period π / ω
C. a simple harmonic motion with a period

$$
2 \pi / \omega
$$

D. a simple harmonic motion with a period

$$
\pi / \omega
$$

Answer: B

D View Text Solution

21. A spring of force constant k is cut into
three equal parts. The force constant of each part would be
A. k/3
B. 3 k
C. k
D. 2 k

Answer: B

- View Text Solution

22. A particle is executing linear simple harmonic motion of amplitude A. At what
displacement is the energy of the particle half potential and half kinetic?
A. $\frac{A}{4}$
B. $\frac{A}{2}$
C. $\frac{A}{\sqrt{2}}$
D. $\frac{A}{\sqrt{3}}$

Answer: C

D View Text Solution
23. The equation of a progressive wave is $y=4 \sin \left(4 \pi t-0.04 x+\frac{\pi}{3}\right)$ where x is in meter and t is in second. The velocity of the wave is
A. $100 \pi m / s$
B. $50 \pi \mathrm{~m} / \mathrm{s}$
C. $25 \pi m / s$
D. $\pi m / s$

Answer: A
24. The period of oscillation of a simple pendulum of length / suspended from the roof of a vehicle, which moves without friction down an inclined plane of inclination α, is given by
A. $2 \pi \sqrt{\frac{l}{g \cos \alpha}}$
B. $2 \pi \sqrt{\frac{l}{g \sin \alpha}}$
C. $2 \pi \sqrt{\frac{l}{g}}$
D. $2 \pi \sqrt{\frac{l}{g \tan \alpha}}$

D View Text Solution

25. The displacement of a particle in S.H.M.
varies according to the relation
$x=4(\cos \pi t+\sin \pi t)$. The amplitude of the particle is
A. -4
B. 4
C. $4 \sqrt{2}$
D. 8

Answer: C

D View Text Solution

26. A plane progressive wave is given by,
$y=2 \cos 6.284(330 t-x)$. What is the period of wave?
A. $\frac{1}{330} s$
B. $2 \pi \times 330 s$
C. $(2 \pi \times 330)^{-1} s$
D. 1

Answer: A

D View Text Solution

27. What is the phase difference between two
simple harmonic motions represented by

$$
x_{1}=A \sin \left(\omega t+\frac{\pi}{6}\right) \text { and } x_{2}=A \cos (\omega t) ?
$$

A. $\pi / 6$
B. $\pi / 3$
C. $\pi / 2$
D. $2 \pi / 3$

Answer: B

D View Text Solution

28. The frequency of the first overtone of a
closed pipe of length l_{1} is equal to that of the
first overtone of an open pipe of length l_{1}.
The ratio of their lengths $\left(l_{1}: l_{2}\right)$ is
A. $2: 3$
B. $4: 5$
C. $3: 5$
D. 3: 4

Answer: D

D View Text Solution

29. Atrain approaching a railway platform with
a speed of $20 \mathrm{~ms}^{-1}$ starts blowing the
whistle. Speed of sound in air is $340 \mathrm{~ms}^{-1}$. If
the frequency of the emitted sound from the whistle is 640 Hz , the frequency of sound to a person standing on the platform will appear to be
A. 600 Hz
B. 640 Hz
C. 680 Hz
D. 720 Hz

Answer: C

30. The first and second resonating lengths of a resonance tube are 17 cm and 55 cm . The end-correction is given by
A. 1.7 cm
B. 2 cm
C. 5.5 cm
D. 7.2 cm

Answer: B

- View Text Solution

Wb Jee Workout Category 2 Single Option

 Correct Type 2 Marks1. A rectangular block of mass m and area of cross section A floats in a liquid of density ρ. If
it is given a small vertical displacement from equilibrium it undergoes with a time period T , then
A. $T \propto \frac{1}{\sqrt{m}}$
B. $T \propto \sqrt{\rho}$

> C. $T \propto \frac{1}{\sqrt{A}}$
> D. $T \propto \frac{1}{\rho}$

Answer: C

D View Text Solution

2. A hollow cylinder with both sides open generates a frequency fin air. When the cylinder vertically immersed into water by half its length the frequency will be
A. f
B. $2 f$
C. $f / 2$
D. $f / 4$

Answer: A

D View Text Solution

3. A mass is suspended separately by two different springs in successive order then time periods is t_{1} and t_{2} respectively. If it is
connected by both spring as shown in figure
then time period is to, the correct relation is

A. $t_{0}^{2}=t_{1}^{2}+t_{2}^{2}$
B. $t_{0}^{-2}=t_{1}^{-2}+t_{2}^{-2}$

$$
\text { C. } t_{0}^{-1}=t_{1}^{-1}+t_{2}^{-1}
$$

$$
\text { D. } t_{0}=t_{1}+t_{2}
$$

Answer: B

D View Text Solution

4. Two springs are joined and connected to mass m as shown. If the springs separately
have force constants K_{1} and K_{2}, then

frequency of oscillation of mass m is

A. $\frac{1}{2 \pi} \sqrt{\frac{K_{1} K_{2}}{\left(K_{1}+K_{2}\right) m}}$
B. $2 \pi \frac{\sqrt{\left(K_{1}+K_{2}\right) m}}{K_{1} K_{2}}$
C. $2 \pi \sqrt{\frac{K_{1} K_{2}}{m}}$
D. $\frac{1}{2 \pi} \sqrt{\frac{m}{K_{1}+K_{2}}}$

Answer: A
5. A particle in simple harmonic motion is described by the displacement function
$x(t)=A \cos (\omega t+\theta)$. If the initial $(\mathrm{t}=0)$
position of the particle is 1 cm , its initial
velocity is it cm / s, and its angular speed is π radian per second then its amplitude is
A. 1 cm
B. $\sqrt{2} \mathrm{~cm}$
C. 2 cm
D. 2.5 cm

Answer: B

D View Text Solution

6. A particle of mass m is attached to three
identical massless springs of spring constant k
as shown in the m 135 figure. The time period

of vertical oscillation of the particle is

A. $2 \pi \sqrt{\frac{m}{k}}$
B. $2 \pi \sqrt{\frac{m}{2 k}}$
C. $2 \pi \sqrt{\frac{m}{3 k}}$
D. $\pi \sqrt{\frac{m}{k}}$

Answer: B

D View Text Solution

7. A longitudnal wave is represented by $x=x_{0} \sin 2 \pi\left(n t-\frac{x}{\lambda}\right) . \quad$ The maximum particle velocity will be four times the wave velocity if

$$
\text { A. } \lambda=\frac{\pi x_{0}}{4}
$$

B. $\lambda-2 \pi x_{0}$
C. $\lambda=\frac{\pi x_{0}}{2}$
D. $\lambda=4 \pi x_{0}$

Answer: C

D View Text Solution

8. The point of suspension λ of a simple pendulum with normal time perid T_{1} is moving upward according to equation
$y=k t^{2}$ where $k=1 m / s^{2}$. If new time period
is T^{2} the ratio $\frac{T_{1}^{2}}{T_{2}^{2}}$ will be
A. $2 / 3$
B. $5 / 6$
C. $6 / 5$
D. $3 / 2$

Answer: C

D View Text Solution

9. When two progressive waves of intensity I_{1}

and I_{2}, but slightly different frequencies
superpose, the resultant intensity fluctuates between

$$
\begin{aligned}
& \text { A. }\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2} \text { and }\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2} \\
& \text { B. } I_{1}+I_{2} \text { and }\left(\sqrt{I_{1}-\sqrt{I_{2}}}\right) \\
& \text { C. }\left(I_{1}+I_{2}\right) \text { and } \sqrt{I_{1}-I_{2}} \\
& \text { D. } \frac{I_{1}}{I_{2}} \text { and } \frac{I_{2}}{I_{1}}
\end{aligned}
$$

Answer: A

10. Two identical springs are connected to mass m as shown ($k=$ spring constant). If the period of the configuration (i) is 2 s , the period
of the configuration (ii) is

A. $\sqrt{2 s}$
B. 1 s
C. $\frac{1}{\sqrt{2}} s$

D. $2 \sqrt{2} s$

Answer: B

D View Text Solution

11. A transverse wave propagating along x-axis
is
represented
$y(x, t)=8.0 \sin (0.5 \pi-4 \pi t-\pi / 4)$ where x
is in metres and t is in seconds. The speed of
the wave is
A. $8 \mathrm{~m} / \mathrm{s}$
B. $4 \pi \mathrm{~m} / \mathrm{s}$
C. $0.5 \pi \mathrm{~m} / \mathrm{s}$
D. $\pi / 4 \mathrm{~m} / \mathrm{s}$.

Answer: A

D View Text Solution
12. The phase difference between two waves, represented by

$$
\begin{aligned}
& y_{1}=10^{-6} \sin [100 t+(x / 50)+0.5] m \\
& y_{2}=10^{-6} \cos [100 t+(x / 50)] m
\end{aligned}
$$

where x is expressed in metres and t is expressed in seconds, is approximately.
A. 1.07 radians
B. 2.07 radians
C. 0.5 radians
D. 1.5 radians

Answer: A
(D) View Text Solution
13. A car is moving towards a high cliff. The driver sounds a horn of frequency f. The reflected sound heard by the driver has frequency $2 f$. If v is the velocity of sound, then
the velocity of the car, in the same velocity units, will be
A. $v / \sqrt{2}$
B. $v / 3$
C. $v / 4$
D. $v / 2$

Answer: B

D View Text Solution

14. A small source of sound moves on a circle
as shown in the figure and an observer is
sitting on O . Let n_{1}, n_{2} and nz be the frequencies heard when the source is at A, B
and C respectively, then

A. $n_{1}>n_{2}>n_{3}$
B. $n_{2}>n_{3}>n_{1}$
C. $n_{1}=n_{2}>n_{3}$
D. $n_{2}>n_{1}>n_{3}$

Answer: B

D View Text Solution

15. If in an experiment for determination of
velocity of sound by resonance tube method using a tuning fork of 512 Hz , first resonance was observed at 30.7 cm and second was obtained at 63.2 cm , then maximum possible error in velocity of sound is
A. $204.8 \mathrm{~cm} / \mathrm{sec}$
B. $102.4 \mathrm{~cm} / \mathrm{sec}$
C. $51.2 \mathrm{~cm} / \mathrm{sec}$
D. $161.3 \mathrm{~cm} / \mathrm{sec}$

Answer: C

- View Text Solution

Wb Jee Workout Category 3 One Or More Than

 One Option Correct Type 2 Marks1. An object of mass m is performing simple harmonic motion on a smooth horizontal
surface as shown in figure. Just as the oscillating object reaches its extreme position, another object of mass 2 m is dropped on it, which sticks to it. For this situation, mark out the correct statement(s).

A. Amplitude of oscillation remains
unchanged.
B. Time period of oscillation remains
unchanged.
C. The total mechanical energy of the
system does not change.
D. The maximum speed of the oscillating
object changes.

Answer: A::C::D

2. Two masses m_{1} and m_{2} are suspended w together by a light spring of spring constant k as shown in figure. When the system is in equilibrium, the mass m_{1} is removed without disturbing the system. As a result of this removal, mass m_{2} performs simple harmonic motion. For this situation mark the correct statement(s).

A. The amplitude of osciallation is $\frac{m_{1} g}{k}$
B. The amplitude of oscillations is
$\frac{\left(m_{1}+m_{2}\right) g}{k}$
C. The system oscillates with angular
frequency $\sqrt{\frac{k}{m_{2}}}$
D. The system oscillates with angular frequency $\sqrt{\frac{k}{m_{1}+m_{2}}}$

Answer: A::C

D View Text Solution

3. A whistle revolves in a circle with angular speed $0=20 \mathrm{rad} / \mathrm{sec}$ using a string of length

50 cm . If the frequency of sound from the whistle is 385 Hz , then what is the minimum frequency heard by an observer which is far away from the centre? (velocity of sound $=340$ m / s)
A. 385 Hz
B. 374 Hz
C. 394 Hz

D. 333 Hz

Answer: B

D View Text Solution

4. The equation of a transverse wave travelling along a spring is $y=4.0 \sin \pi(2.0 t-0.010 x)$
, where y and x are in cm and t in second
A. Amplitude , $a=4 \mathrm{~cm}$, wavelength
$\lambda=200 \mathrm{~cm}$ and frequency of the wire
$v=1 s^{-1}$
B. The initial phase at the origin is 180°
C. The phase difference between two
positions of the same particle at a time interval of 0.50 second is 180°

D. None of these

Answer: A::C

D View Text Solution
5. Two blocks connected by a spring rest on a smooth ITIM horizontal plane as shown in
figure. A constant force F starts acting on block m_{2} as shown in the figure. Which of the following statements are not correct?

A. Length of the spring increases
continuously if $m_{1}>m_{2}$
B. Blocks start performing SHM about centre of mass of the system, which moves rectilinearly with constant acceleration.
C. Blocks start performing oscillations about centre of mass of the system with increasing amplitude.
D. Acceleration of my is maximum at initial
moment of time only.
6. A block A of mass m connected with a spring of force constant k is executing SHM. The displacement time equation of the block is
$x=x_{0}+a \sin \omega t$. An identical block B moving towards negative x-axis with velocity vo collides elastically with block A at time $t=0$.

Then,

A. displacement time equation of A after
collision will be $x=x_{0}-v_{0} \sqrt{\frac{m}{k}} \sin \omega t$
B. displacement time equation of A after
collision will be $x=x_{0}+v_{0} \sqrt{\frac{m}{k}} \sin \omega t$
C. velocity of B just after collision will be aw
towards positive x-direction.
D. velocity of B just after collision will be vo
towards positive x-direction.

Answer: A::C

7. The ratio of the densities of oxygen and

 nitrogen is 16:14. At what temperature, the velocity of sound in oxygen will be equal to its velocity in nitrogen at $14^{\circ} \mathrm{C}$?A. $45^{\circ} \mathrm{C}$
B. $55^{\circ} \mathrm{C}$
C. $20^{\circ} \mathrm{C}$
D. $35^{\circ} \mathrm{C}$

- View Text Solution

8. An open pipe is in resonance in its 2nd harmonic with tuning fork of frequency f_{1}.

Now it is closed at one end. If the frequency of
the tuning fork is increased slowly from f_{1}
then again a resonance is obtained with a
frequency f_{2}. If in this case the pipe vibrates nth harmonics then

$$
\begin{aligned}
& \text { A. } n=3, f_{2}=\frac{3}{4} f_{1} \\
& \text { B. } n=3, f_{2}=\frac{5}{4} f_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } n=5, f_{2}=\frac{5}{4} f_{1} \\
& \text { D. } n=5, f_{2}=\frac{3}{4} f_{1}
\end{aligned}
$$

Answer: C

D View Text Solution

9. A simple pendulum of length 1 m with a bob
of mass m swings with an angular amplitude
30°. Then $\left(g=9.8 m s^{-2}\right)$
A. time period of pendulum is 2 s
B. tension in the string is greater than $\operatorname{mgcos} 15^{\circ}$ at angular displacement 15°
C. rate of change of speed at angular displacement 15° is $g \sin 15^{\circ}$
D. tension in the string is $m g \cos 15^{\circ}$ at angulardisplacement 15°

Answer: B::C

D View Text Solution
10. A particle of mass m is located in a one dimensional potential field where potential energy is given by $V(x)=A(1-\operatorname{cospx})$, where A and p are constants. The period of small oscillations of the particle is

$$
\begin{aligned}
& \text { A. } 2 \pi \sqrt{\frac{m}{A p}} \\
& \text { B. } 2 \pi \sqrt{\frac{m}{A p^{2}}} \\
& \text { C. } 2 \pi \sqrt{\frac{m}{A}} \\
& \text { D. } \frac{1}{2 \pi} \sqrt{\frac{A p}{m}}
\end{aligned}
$$

D View Text Solution

Wb Jee Previous Years Questions Category 1 Single Option Correct Type 1 Mark

1. A travelling acoustic wave of frequency 500

Hz is moving along the positive x -direction with a velocity of $300 \mathrm{~ms}^{-1}$. The phase difference between two points x_{1} and x_{2} is
60°. Then the minimum separation between the two points is
A. 1 mm
B. 1 cm
C. 10 cm
D. 1 m

Answer: C

D View Text Solution
2. The fundamental frequency of a closed pipe is equal to the frequency of the second
harmonic of an open pipe. The ratio of their

lengths is

A. $1: 2$
B. $1: 4$
C. $1: 8$
D. 1: 16

Answer: B

D View Text Solution
3. A car moving at a velocity of $17 \mathrm{~ms}^{-1}$ towards an approaching bus that blows a horn at a frequency of 640 Hz on a straight track. The frequency of this horn appears to be 680 Hz to the car driver. If the velocity of sound in air is $340 \mathrm{~ms}^{-1}$, then the velocity of the approaching bus is
A. $2 m s^{-1}$
B. $4 m s^{-1}$
C. $8 m s^{-1}$

D. $10 m s^{-1}$

Answer: B

D View Text Solution

4. When a particle executing SHM oscillates
with a frequency v , then the kinetic energy of the particle,
A. changes periodically with a frequency of
B. changes periodically with a frequency of
$2 u$.
C. changes periodically with a frequency of
v/2.
D. remains constant.

Answer: B

- View Text Solution

5. The displacement of a particle in a periodic motion is given by $y=4 \cos ^{2}\left(\frac{t}{2}\right) \sin (1000 t)$. This displacement may be considered as the result of superposition of n independent harmonic oscillations. Here n is
A. 1
B. 2
C. 3
D. 4
6. A whistle whose air column is open at both ends has a fundamental frequency of 5100 Hz .

If the speed of sound in air is $340 \mathrm{~ms}^{-1}$, the length of the whistle, in cm , is
A. $5 / 3$
B. $10 / 3$
C. 5
D. $20 / 3$

Answer: B

D View Text Solution

7. A car is moving with a speed of 72 km
hour ${ }^{-1}$ towards a roadside source that emits
sound at a frequency of 850 Hz . The car driver
listens to the sound while approaching the source and again while moving away from the
source after crossing it. If the velocity of sound is $340 \mathrm{~ms}^{-1}$ the difference of the two frequencies, the driver hears is
A. 50 Hz
B. 85 Hz
C. 100 Hz
D. 150 Hz

Answer: C

D View Text Solution

8. A simple pendulum of length L swings in a vertical plane. The tension of the string when
it makes an angle θ with the vertical and the
bob of mass m moves with a speed v is (g is
the gravitational acceleration)
A. $m v^{2} / L$
B. $m g \cos \theta+m v^{2} / L$
C. $m g \cos \theta-m v^{2} / L$
D. $m g \cos \theta$

Answer: B

D View Text Solution
9. The length of an open organ pipe is twice
the length of another closed organ pipe. The
fundamental frequency of the open pipe is 100
Hz . The frequency of the third harmonic of the closed pipe is
A. 100 Hz
B. 200 Hz
C. 300 Hz
D. 150 Hz

Answer: C
10. A train is moving with a uniform speed of
$33 \mathrm{~m} / \mathrm{s}$ and an observer is approaching the train with the same speed. If the train blows a whistle of frequency 1000 Hz and the velocity of sound is $333 \mathrm{~m} / \mathrm{s}$, then the apparent frequency of the sound that the observer hears is
A. 1220 Hz
B. 1099 Hz

C. 1110 Hz

D. 1200 Hz

Answer: A

D View Text Solution

11. A particle vibrating simple harmonically has
an acceleration of $16 \mathrm{cms}^{-2}$ when it is at a
distance of 4 cm from the mean position. Its
time period is
A. is
B. 2.571 s
C. 3.142 s
D. 6.028 s

Answer: C

D View Text Solution

12. For air at room temperature the atmospheric pressure is $1.0 \times 10^{5} \mathrm{Nm}^{-2}$ and density of air is $1.2 \mathrm{kgm}^{-3}$. For a tube of
length 1.0 m closed at one end the lowest frequency generated is 84 Hz . The value of y (ratio of two specific heats) for air is
A. 2.1
B. 1.5
C. 1.8
D. 1.4

Answer: D

D View Text Solution
13. The velocity of sound in air at $20^{\circ} \mathrm{C}$ and 1 atm pressure is $344.2 \mathrm{~m} / \mathrm{s}$. At $40^{\circ} \mathrm{C}$ and 2 atm pressure, the velocity of sound in air is approximately
A. $250 \mathrm{~m} / \mathrm{s}$
B. $356 \mathrm{~m} / \mathrm{s}$
C. $363 \mathrm{~m} / \mathrm{s}$
D. $370 \mathrm{~m} / \mathrm{s}$

Answer: B

D View Text Solution
14. The velocity of a particle executing a simple harmonic motion is $13 \mathrm{~ms}^{-1}$ when its distance from the equilibrium position (Q) is 3 m and its velocity is $12 \mathrm{~ms}^{-1}$ when it is 5 m away from Q. The frequency of the simple harmonic motion is
A. $\frac{5 \pi}{8}$
B. $\frac{5}{8 \pi}$
C. $\frac{8 \pi}{5}$
D. $\frac{8}{5 \pi}$

Answer: B

- View Text Solution

15. A uniform string of length L and mass M is
fixed at both ends while it is subject to a tension T. It can vibrate at frequencies (v) given by the formula where $n=1,2,3$.

$$
\begin{aligned}
& \text { A. } v=\frac{n}{2} \sqrt{\frac{T}{M L}} \\
& \text { B. } v=\frac{n}{2 L} \sqrt{\frac{T}{M}} \\
& \text { C. } v=\frac{1}{2 n} \sqrt{\frac{T}{M L}}
\end{aligned}
$$

D. $v=\frac{n}{2} \sqrt{\frac{T L}{M}}$

Answer: A

D View Text Solution

16. In case of a simple harmonic motion, if the
velocity is plotted along the X -axis and the displacement (from the equilibrium position) is plotted along the Y -axis, the resultant curve happens to be an ellipse with the ratio $=\frac{\text { major axis along } \mathrm{X}}{\text { minor axis along } \mathrm{Y}}=20 \pi$

What is the frequency of the simple harmonic motion?
A. 100 Hz
B. 20 Hz
C. 10 Hz
D. $\frac{1}{10} \mathrm{~Hz}$

Answer: C

D View Text Solution

Wb Jee Previous Years Questions Category 2 Single Option Correct Type 2 Marks

1. Two simple harmonic motions are given by

$$
x_{1}=a \sin \omega t+a \cos \omega t
$$

$x_{2}=a \sin \omega t+\frac{a}{\sqrt{3}} 01$. The ratio of the amplitudes of first and second motion and the phase difference between them are respectively
A. $\sqrt{\frac{3}{2}}$ and $\frac{\pi}{12}$
B. $\frac{\sqrt{3}}{2}$ and $\frac{\pi}{12}$
C. $\frac{2}{\sqrt{3}}$ and $\frac{\pi}{12}$
D. $\sqrt{\frac{3}{2}}$ and $\frac{\pi}{6}$

Answer: A

D View Text Solution

2. A small mass m attached to one end of a spring with a negligible mass and an unstretched length L, executes vertical oscillations with angular frequency ω_{0} When the mass is rotated with an angular speed ω
by holding the other end of the spring at a fixed point, the mass moves uniformly in a circular path in a horizontal plane. Then the increase in length of the spring during this rotation is

$$
\begin{aligned}
& \text { A. } \frac{\omega^{2} L}{\omega_{0}^{2}-\omega^{2}} \\
& \text { B. } \frac{\omega_{0}^{2} L}{\omega^{2}-\omega_{0}^{2}} \\
& \text { C. } \frac{\omega^{2} L}{\omega_{0}^{2}} \\
& \text { D. } \frac{\omega_{0}^{2} L}{\omega^{2}}
\end{aligned}
$$

3. Sound waves are passing through two routes- one in straight path and the other along a semicircular path of radius r and are again combined into one pipe and superposed as shown in the figure. If the velocity of sound
waves in the pipe is y, then frequencies of resultant waves of maximum amplitude will be integral multiples of
A. $\frac{v}{r(\pi-2)}$
B. $\frac{v}{r(\pi-1)}$
C. $\frac{2 v}{r(\pi-1)}$
D. $\frac{v}{r(\pi+1)}$

Answer: A

D View Text Solution

Wb Jee Previous Years Questions Category 3 One

 Or More Than One Option Correct Type 2 Marks1. If the pressure, temperature and density of an ideal gas are denoted by P, T and ρ, respectively, the velocity of sound in the gas is
A. proportional to \sqrt{P}, when T is constant
B. proportional to \sqrt{T}
C. proportional to \sqrt{P}, when ρ is constant
D. proportional to T .

Answer: B::C
2. The intensity of a sound appears to an observer to be periodic. Which of the following can be the cause of it?
A. The intensity of the source is periodic
B. The source is moving towards the
observer
C. The observer is moving away from the
source
D. The source is producing a sound composed of two nearby frequencies.

Answer: A::D
(D) View Text Solution

