

PHYSICS

BOOKS - R G PUBLICATION

FORCE AND LAWS OF MOTION

Example

1. Which of the following has more inertia: a rubber ball or a stone of the same size?

2. Which of the following has more inertia: a bicyle and a train?

Watch Video Solution

3. Which of the following has more inertia: a five rupees coin and a one-rupee coin?

4. Explain why some of the leaves may get detached from a tree if we vigorously shake its branch.

Watch Video Solution

5. Why do you fall in the forward direction when a moving bus brakes to a stop and fall backwards when it accelerates from rest?

6. If action is always equal to the reaction, explain how a horse can pull a cart.

Watch Video Solution

7. Explain, why is it difficult for a fireman to hold a hose, which ejects large amounts of water at a high velocity.

8. From a rifle mass 4kg a bullet of mass 50g is fired with an initia, velocity of $35ms^{-1}$. Calculate the initial recoil velocity of the rifle.

Watch Video Solution

9. Two objects of masses 100 g and 200 g are moving along the same line and direction with velocities of 2 m/s and 1 m/s, respectively. They collide and after the collision, the first object

moves at a velocity of 1.67 m/s. Determine the velocity of the second object.

Watch Video Solution

10. When a carpet is beaten with a stick, dust comes out of it. Explain.

Watch Video Solution

11. Why is it advised to tie any luggage kept on the roof of a bus with a rope?

12. A batsman hits a cricket ball which then rolls on a level ground. After covering a - short distance, the ball comes to rest, the ball slows to a stop because

A. (a) the batsman did not hit the ball hard enough

B. (b) velocity is proportional to the force exerted on the ball.

C. (c) there is a force on the ball opposing the motion.

D. (d) there is no unbalanced force on the ball, so the ball would want to come to rest.

Answer:

13. A truck starts from rest and rolls down a hill with a constant acceleration. It travels a distance of 400 m in 20 s. Find its.acceleration. Find the force acting on it if its mass is 7 tonnes (Hint: 1 tonne = 1000 kg.)

Watch Video Solution

14. A stone of 1 kg is thrown with a velocity of $20ms^{-1}$ across the frozen surface of a lake and comes to rest after travelling a distance of

50 m. What is the force of friction between the stone and the ice?

Watch Video Solution

15. A 8000kg engine pulls a train of 5 wagons, each of 2000kg, along a horizontal track. If the engine exerts a force of 40000N and the track offers a friction force of 5000N, then calculate the net accelerating force.

16. A 8000 kg engine pulls a train of 5 wagons, each of 2000 kg, along a horizontal track. If the engine exerts a force of 40000 N and the track offers a friction force of 5000 N, then calculate: the acceleration of the train.

Watch Video Solution

17. A 8000 kg engine pulls a train of 5 wagons, each of 2000 kg, along a horizontal track. If the engine exerts a force of 40000 N and the

track offers a friction force of 5000 N, then calculate: the force of wagon 1 on wagon 2.

Watch Video Solution

18. An automobile vehicle has a mass of 1500 kg. What must be the force between the vehicle and road if the vehicle is to be stopped with a negative acceleration of $1.7ms^{-2}$?

19. What is the momentum?

Watch Video Solution

20. What is the momentum?

Watch Video Solution

21. Using a horizontal force of 200 N, we intend to move a wooden cabinet across a floor at a constant velocity. What is the

frictional force that will be exerted on the cabinet?

Watch Video Solution

22. Two objects, each of mass 1.5 kg, are moving in the same straight line but in opposite directions. The velocity of each object is $2.5ms^{-1}$ before the collision during which they stick together. What will be the velocity of the combined object after collision?

23. A hockey ball of mass 200 g travelling at $10ms^{-1}$ is struck by a hockey stick so as to return it along its original path with a velocity at $5ms^{1}$. Calculate the change of momentum occured in the motion of hockey ball by the force applied by the hockey stick.

Watch Video Solution

24. A bullet of mass 10 g travelling horizontally with a velocity of $150ms^{-1}$ strikes a stationary

wooden block and comes to rest in 0.03 s.

Calculate the distance of penetration of the bullet into the block.

Watch Video Solution

25. A bullet of mass 10 g travelling horizontally with a velocity of $150ms^{-1}$ strikes a stationary wooden block and comes to rest in 0.03 s. Calculate the force exerted by the wooden block

26. An object of mass 100 kg is accelerated uniformly from a velocity of $5ms^{-1}$ to $8ms^{-1}$ in 6 s. Calculate the initial and final momentum of the object. Also, find the magnitude of the force exerted on the object.

Watch Video Solution

27. How much momentum will a dumb-bell of mass 10 kg transfer to the floor if it falls from

a height of 80 cm? Take its downward acceleration to be $10ms^{-2}$.

Watch Video Solution

28. The following is the distance-time table of an object in motion:

Tir	ne in seconds	Distance in metres
	0	. 0
	1	1
	2	8
	3	27
	4	64
	5	125
	6	216
	7	343

What conclusion can you draw about the

acceleration? Is ti constant, increasing, decreasing, or zero?

Watch Video Solution

29. The following is the distance-time table of an object in motion:

Tir	ne in seconds	Distance in metres
	0	. 0
	1	1
	2	8
	3	27
	4	64
-	5	125
	6	216
	7	343

What do you infer about the forces acting on the object?

30. Two persons manage to push a motorcar of mass 1200 kg at a uniform velocity along a level road, the same motorcar can be pushed by three persons to produce an acceleration of $0.2ms^{-2}$. With what force does each person push the motorcar? (Assume that all persons push the motorcar with the same muscular effort.)

31. A hammer of mass 500 g, moving at $50ms^{-1}$, strikes a nail. The nail stops the hammer in a very short time of 0.01 s. What is the force of the nail on the hammer?

Watch Video Solution

32. A motorcar of mass 1200 kg is moving along a straight line with a uniform velocity of 90 km/h. Its velocity is slowed down to 18 km/h in 4 s by an unbalanced external force.

Calculate the acceleration and change in momentum. Also calculate the magnitude of the force required.

Watch Video Solution

33. If the masses of two bodes A and B are 5 kg and 10 kg respectively, then which one of the following is true?

A. Inertia of A is greater than that of B.

B. Inertia of B is greater than that of A.

- C. Inertia of A and B are equal
- D. Neither A nor B has any inertia.

Answer:

- **34.** When there is acceleration in a body:
 - A. Its speed always increases
 - B. Its velocity always increases
 - C. Its direction always changes

D. None of the above

Answer:

Watch Video Solution

35. If the mass of body and the force acting on it are known, then from Newton's laws of motion, we can get:

A. the weight of the body

B. the velocity of the body

- C. the acceleration of the body.
- D. None of the above

Answer:

Watch Video Solution

36. If a force of 2 Newton is applied on a body of mass 2 kilogram,

A. the velocity of the body will be 1 meter.sec.

B. the acceleration of the body will be

 $1meter/\sec^2$

C. the velocity of the body will be 1 kilogram/sec

D. None of the above

Answer:

Watch Video Solution

37. Which has the unit kg m/s

A. Momentum		
B. Force		
C. acceleration		
D. Velocity		
Answer:		
Watch Video Solution		

38. Which one is unit fo force?

A. g m/s

- B. kg m/s
- C. kgm/s^2
- D. m/s^2

Answer:

- **39.** Which relation is correct?
 - A. acceleration = Force x mass
 - B. mass = acceleration x force

- C. mass = acceleration/force
- D. Force = mass x acceleration

Answer:

- **40.** Which does not change under the action of force
 - A. mass of a body
 - B. velocity of a body

C. direction of motion of a body

D. shape of a body

Answer:

Watch Video Solution

41. What is the relation for momentum if mass of a body is m and velocity is v

A.
$$\frac{m}{v}$$

B.
$$\frac{c}{m}$$

C. mv

D. m^2v^2

Answer:

Watch Video Solution

42. Two froces F_1 and F_2 act on two bodies of mass m_1 and m_2 respectively and produce acceleration a_1 and a_2 . If $F_1=F_2$ and $m_1 < m_2$ then which one is correct?

A.
$$a_1>a_2$$

B.
$$a_1 < a_2$$

$$\mathsf{C.}\,a_1=a_2$$

D.
$$rac{a_1}{a_2} < 1$$

Answer:

Watch Video Solution

43. Write Newton's first law.

44. What is inertia?

Watch Video Solution

45. On which inertia of a body depends?

Watch Video Solution

46. Which law of motion is known as law of inertia?

Watch Video Solution

47. What type of inertia are there? What are they?

48. What is inertia of rest?

49. What is inertia of motion?

50. Write Newton's second law of motion.

Watch Video Solution

51. What is momentum? What is its unit?

Watch Video Solution

52. What is the S.I unit of momentum?

53. What is the C.G.S. unit of momentum?

Watch Video Solution

54. Is momentum a scalar quantity?

55. There is a tennis ball and a cricket ball of equal volume. Which one has greater inertia and why?

Watch Video Solution

56. What is the S.I. unit of force?

Watch Video Solution

57. Define 1 Newton.

58. Write Newton's 3rd Law of motion.

59. Write the law of conservation of momentum.

60. What is balanced force?

Watch Video Solution

61. What is unbalanced force?

62. Force can change the velocity of a body. Give one example.

63. Force can change the direction of motion of a body. Give one example.

Watch Video Solution

64. Force can change the shape of body. Give one example.

65. The force which causes only change in shape of a body does not cause motion in the body is balanced or unbalanced?

Watch Video Solution

66. What are the conditions under which a body can stay in a state of rest.

67. Which force opposes motion when a body is being pulled or pushed?

Watch Video Solution

68. What type of forces-balanced or unbalanced-act on a rubber ball when we press it between our hands?

69. When pedalling is stopped the velocity of a bicyle in motion gradually decreases. Why?

Watch Video Solution

70. Under what condition a moving body will continue to be in the state of motion even when no unbalanced force acts on it?

71. Describe the effect on passenger when a moving bus suddenly changes its direction of motion.

Watch Video Solution

72. What is the relation between applied force and momentum produced in a body?

73. What do you mean by conservation of momentum?

Watch Video Solution

74. When a, bullet leave a gun, the gun presses on the shoulder of the person firing the gun. Explain why.

75. When a Carpet is beaten with a stick, dust comes out of it. Explain

Watch Video Solution

76. If the mass of a body is halved and its velocity doubled, its momentum will not change. Explain.

77. A five-rupee coin is put on a thick smooth card and place it on a glass tumbler. Now flick the card horizontally striking it hard with your finger at one of its corners. Explain what you observe.

Watch Video Solution

78. Why is it dangerous to jump out of a moving bus?

79. Mention three effects of force on a body.

Watch Video Solution

80. Prove that F = ma

Where, $F \rightarrow applied force$

 $m \, o \,$ of the body

 $a \rightarrow acceleration produced in the body.$

81. Prove the law of conservation of momentum.

Watch Video Solution

82. Forces F_1 and F_2 and applied on two bodies of mass m each. The acceleration produced in them are a and 2a respectively. Find the relation between F_1 and F_2

83. A body of mass 150 kg is moving with a velocity 20 m/s and it takes 5 sec. to stop after the brakes are applied. Find the acceleration and applied force.

Watch Video Solution

84. The mass, of a body at rest is 3 kg. How much force has to be applied on it so that after 2 seconds its velocity may become 40 m/sec?

Watch Video Solution

85. For how long a force of 100 Newton has to be applied on a body at rest of mass 20kg so that its velocity becomes 100 m/sec?

Watch Video Solution

86. If a force of 30 Newton is applied on a body of mass 15 kg. What will be its acceleration?

87. A body of mass 10 kg is moving with a velocity 10/sec. When a force is applied on it, after 25 seconds its velocity become 30m/sec. Find the magnitude of the force applied.

Watch Video Solution

88. The velocity of a motor car of mass 120 kg in increased from 36km/ hour to 72 km/hour. Find the change in momentum.

89. A ball of mass 150 gm is thrown vertically upward with a velocity of 10m/sec. What is its initial momentum?

Watch Video Solution

90. A ball of mass 150 gm is thrown vertically upward with a velocity of 10m/sec. What is the momentum at its highest point of ascend?

91. What is the momentum of a body of mass 10kg when it is at rest?

Watch Video Solution

92. An acceleration fo $5m/s^2$ is produced by applying a force of 50 N on a body. Find the mass of the body.

93. Find the force needed to produce an acceleration of 6 m/s2 in a ball of mass 4kg.

Watch Video Solution

94. Two forces of 40 Newton and 72 Newton are applied separately on a body of mass 8 kg. Find the acceleration produced in each case.

95. A force of 10 N is applied to a body at rest for 3 sec. The velocity of the body becomes 2 m/s. Find the mass of the body.

Watch Video Solution

96. A scooter of mass 75 kg is moving with a.Velocity 72 km/h. Calculate the force necessary to stop the scooter at a distance of 100 m.

97. A body of mass 15 kg is moving with a velocity 20 m/s. Calculate the distance travelled by the body before stopping, if a force of 30 N is applied on the body in the direction opposite to the direction of motion.

Watch Video Solution

98. A body of mass 2kg moving with velocity 10 m/s collides another body of mass 500 g and moving with velocity 4 m/s. After collision if

the 2nd body attains velocity of 8m/s, what will be the velocity of first body?

