

MATHS

BOOKS - KALYANI PUBLICATION

INEQUALITIES AND INEQUATIONS

Example

1. For
$$a>0$$
 prove that $\left(a+\dfrac{1}{a}\right)\geq 2$.

Watch Video Solution

 $(2x^2 - 8x + 9) > 0.$

2. For all values of x prove that

3. For $x \geq -3$ prove that

 $x^3 + 27 + 9x^2 + 27x > 0.$

4. For
$$x>1$$
 and $y>1$ prove that $(x+1)(y+1)<2(xy+1).$

5. if a>b>c>0,then prove that

$$\frac{a+b}{2}>\frac{a+b+c}{3}>\frac{b+c}{2}$$

Watch Video Solution

6. If a,b,x,y are four unequal real numbers and

$$x^2+y^2=5$$
, $a^2+b^2=3$,then prove that

$$ax + by < 4$$
.

Watch Video Solution

- 7. If a,b,c are three positive numbers,then`. a/b + b/c + c/a
 - Watch Video Solution

- **8.** Prove that the perimeter of any quadrilateral is greater than the sum of the diagonals.
 - Watch Video Solution

9. If a and b are two unequal positive real numbers,then prove that $(a+b)\left(\frac{5}{a}+\frac{1}{5b}\right)>4$.

10. If x,y,z are all positive real number and
$$x+y+z=s$$
,then prove that $(s-x)(s-y)(s-z)\geq 8xyz.$

11. Prove that $\sqrt{7}+\sqrt{6}>\sqrt{8}+\sqrt{5}$.

12. If
$$a,b>0$$
, $a\neq b$, and $n>1$, where n is an integer, then prove that $a^n+b^n>a^{n-1}b+ab^{n-1}$.

13. If a,b,c are three positive real numbers then show that $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 9.$

14. If 4x+y=5,then find the greatest value of $\frac{1}{3}(xy)$.

15. If
$$\frac{3}{5}xy=15$$
,then find the least value of $2(x+y)$.

16. Find the solution sets of the following inequations.

$$5(1-x) < 3(x-2) - 29.$$

Watch Video Solution

17. Find the solution sets of the following inequations.

$$\frac{9x+7}{2} > \left(x - \frac{x-2}{7}\right) + 36.$$

18. Find the solution set of the following system of in—equation.

$$2x - 3 < 0, 4 - 5x < 0.$$

19. Find the solution sets of the following inequation

$$x^2-x-2>0$$

20. Find the solution sets of the following inequation

$$3-x^2-2x>0.$$

21. Find the solution set of the inequations $4 < x^2 < 16$.

22. Solve the equation |x-3|=2

23. Express the following removing the absolute sign OR solve the following inequations.

 $|x| \leq 5$.

24. Express the following removing the absolute sign OR solve the following inequations.

$$|x+2| < 5.$$

25. Express in absolute value

$$-6 < x < 6$$
.

26. Express in absolute value

$$x>5$$
 or $x<\,-1$

Watch Video Solution

27. Express in absolute value

$$-\sqrt{5}+2 \le x \le \sqrt{5}+2.$$

28. Find the solution set of the inequation

$$\frac{x}{2} + \frac{y}{3} > 2.$$

Watch Video Solution

29. Find the simultaneous solution sets of the following sets of inequations.

$$(3x+4y)<24$$

$$x - 2y < 4$$
.

Watch Video Solution

30. Find the simultaneous solution sets of the following sets of inequations.

$$\frac{x}{3} + \frac{y}{4} < 1$$

$$x \geq 0, y \geq 0.$$

Exercise

1. State whether the following statements are true or false. If false give the correct answer.

a > a + m.

2. State whether the following statements are true or false. If false give the correct answer.

 $a > b \Rightarrow ma > mb$.

 $a^3 > a$.

4. State whether the following statements are true or false. If false give the correct answer.

 $ma > mb \Rightarrow a^2 > b^2$.

$$a>b \Rightarrow -rac{1}{a}> -rac{1}{b}.$$

6. State whether the following statements are true or false. If false give the correct answer.

$$x > 2$$
, $x > 3 \Rightarrow x > 2$.

$$x < 3$$
, $x < 1 \Rightarrow x < 1$.

8. State whether the following statements are true or false. If false give the correct answer.

$$x > -1, x < 3 \Rightarrow -1 < x < 3.$$

$$\times \le 1, x \ge -1 \Rightarrow x \ge 4.$$

10. State whether the following statements are true or false. If false give the correct answer.

$$x > 2, x < -2 \Rightarrow -2 < x < 2.$$

11. Compare the pairs of real number given below a^3+1 , a^2+1 .

12. Compare the pairs of real number given below $a^3+b^3,\,a^2b+ab^2.$

13. Compare the pairs of real number given below $ab+1,\,a+b.$

14. Prove the following where a,b,xm,n>0 $m^5+n^5\geq m^4n-mn^4.$

15. Prove the following where a,b,xm,n>0 $a^6+b^6\geq a^5b+ab^5.$

16. Prove the following where a,b,xm,n>0

$$a^{m+n} + b^{m+n} \ge a^m b^n + a^n b^m.$$

17. Prove the following where m, n > 0

$$m^3 - n^3 > (m - n)^3, (m > n).$$

18. Prove the following where a,b,m,n>0

$$\frac{m+2n}{m+3n} \geq \frac{m+n}{m+2n}.$$

19. Prove the following where a, b, xm, n > 0

$$rac{m^3+n^3}{m^2+n^2} \geq rac{m^2+n^2}{m+n}.$$

20. Prove the following where a, b, xm, n > 0

$$\frac{a-c}{b} \ge \frac{b-c}{a} + \frac{a-b}{b}(0 < a < b < c).$$

21. Prove the following where
$$a, b, xm, n > 0$$

$$rac{a^3+b^3}{a^2+b^2}>rac{a^2+b^2}{a+b}>rac{a+b}{2}(a
eq b).$$

Watch Video Solution

22. Prove that

$$rac{1}{a+b} + rac{1}{a-b} > rac{1}{\sqrt{a^2-b^2}}(a>b).$$

Watch Video Solution

23. Prove that

$$rac{a^2+b^2}{2}>igg(rac{a+b}{2}igg)(a
eq b).$$

24. Prove that

$$(a+b)^2 > 14(a+b) - 49(a > 0, b > 0).$$

25. Find the value of x for which the following expressions aquire greatest value? Also determine their greatest values.

$$24x - 8 - 9x^2$$
.

26. Find the value of x for which the following expressions acquire greatest value? Also determine their greatest values.

$$8x - x^2 - 13$$

27. Find the value of x for which the following expressions are minimum. Also determine their minimum values.

$$4x^2 - 12x + 13$$
.

28. Find the value of x for which the following expressions are minimum. Also determine their minimum values.

$$x^2 - 6x + 40$$
.

29. Find the greatest value of x in order that.

$$7x^2 + 11 \ge x^3 + 17x.$$

Watch Video Solution

30. Find the least value of x in order that.

$$3x^3 + 7x \ge 8x^2 + 2.$$

Watch Video Solution

31.

$$\frac{b^3+c^3}{b+c}+\frac{c^3+a^3}{c+a}+\frac{a^3+b^3}{a+b}>ab+bc+ca$$

32. If a,b,c are positive unequal real numbers then prove that

 $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{1}{\sqrt{bc}} + \frac{1}{\sqrt{ac}} + \frac{1}{\sqrt{ab}}.$

33. If a,b,c are positive unequal real numbers then prove that $\frac{bc}{a} + \frac{ca}{b} + \frac{ab}{c} \ge a + b + c.$

34. If a,b,c are positive unequal real numbers then prove that
$$b^2c^2+c^2a^2+a^2b^2>abc(a+b+c).$$

35. If a,b,c are positive unequal real numbers then prove that

$$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>9$$

36. If a,b,c,e,f,g are positive unequal real numbers then prove that

$$\left(\frac{a}{e} + \frac{b}{f} + \frac{c}{g}\right)\left(\frac{e}{a} + \frac{f}{b} + \frac{g}{c}\right) > 9$$

Watch Video Solution

37. If a,b,c are positive unequal real numbers then prove that

$$a^2 + b^2 + c^2 > ab + bc + ca$$
.

Hence prove that $a^3+b^3+c^3>3abc$

Watch Video Solution

38. prove that

$$\sqrt{7} + \sqrt{12} > \sqrt{6} + \sqrt{13}$$
.

Watch Video Solution

39. If a,b,c are positive unequal real numbers then prove that

$$\sqrt{14} + \sqrt{7} > \sqrt{16} + \sqrt{5}$$
.

40. Prove that in any triangle, the semi perimeter is greater than each of its sides.

41. Prove that in any quadrilateral the sum of the diagonals is greater than its semi—perimeter.

42. If
$$\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2$$
 then prove that $\frac{x}{a}=\frac{y}{b}$.

43. If a,b,c are positive unequal real numbers then prove that $a^2+b^2+c^2=1=x^2+y^2+z^2$,then prove that

$$az + bx + cy \le 1.$$

44. If a,b, c and x, y, z are all positive and unequal, then prove that,

$$(ax + by)(ab + xy) > 4abxy.$$

45. If a,b, c and x, y, z are all positive and unequal, then prove that,

$$(b+c)(c+a)(a+b) > 8abc.$$

46. If x, y, z are all positive real numbers, then prove that,

If
$$x+y+z=1$$
, then prove that $(1-x)(1-y)(1-z) \geq 8xyz.$

47. If a,b, c and x, y, z are all positive and unequal, then prove that,

$$(xy+1)(yz+1)(zx+1) > 8xyzigg[\sqrt{x}y+rac{1}{\sqrt{x}y}>2$$
etc]

48. If x + y = 5, then find the greatest value of 10xy.

49. If 2x+3y=5, then find the greatest value of 8xy.

50. If $\frac{7}{12}xy=21$, then find the minimum value of 5(x+y).

51. Find the solution sets of the following inequations.

$$7(3-2x)+5(x-1)<34.$$

52. Find the solution sets of the following inequations.

$$5(x-11)+4>2(x-15).$$

$$8(2x-7)-9(3x-14)>15.$$

$$13x - 4(5x - 8) + 17 > 0.$$

$$14(x-4) + 3(x+5) < 6(7-2x) + 4.$$

$$a^2(x-a)+b^2(x-b)\geq abx.$$

$$\frac{x-6}{5} + \frac{x-4}{3} \le 8 - \frac{x-2}{7}.$$

58. Find the solution sets of the following inequations.

$$\frac{x}{10} + \frac{2x - 13}{9} > 8 - \frac{4x - 35}{15}.$$

Watch Video Solution

$$4x + 3 > 2x + 5$$

$$5x - 6 < 2x + 3$$
.

$$5(1-x) > 3(x-2) - 29$$

$$4(2-x)+2(3-2x)<30$$

$$3x + 2 \le x + 6$$

$$15x - 9 \ge 11x - 25$$
.

$$4(x-3) \leq 2(x-6).$$

$$19 - 3x < 5x + 35$$
.

$$3(x-2) + 7(2x-3) \ge 5(1-2x) - 59.$$

$$13x - 4(5x - 8) + 17 > 0.$$

$$49 + 13(5x + 27) < 8(5 + x) - 3x.$$

$$14(x-4) + 3(x+5) < 6(7-2x) + 4.$$

$$x^2 - 7x + 12 > 0.$$

$$x^2 - x - 20 < 0.$$

$$x^2 + x - 20 > 0.$$

$$x^2 + 2x - 15 < 0.$$

$$x-x^2+6\geq 0.$$

$$7x - x^2 - 6 \le 0.$$

$$x^2 < 9$$
.

$$x^2 > 16$$
.

$$x^2 < 36$$
.

$$9 < x^2 < 25$$
.

$$1 < x^2 < 4$$
.

77. Evaluate the following

$$|-2| + |1|$$
.

78. Evaluate the following

$$|-4-3|$$
.

79. Evaluate the following

|2 - 7|.

80. Evaluate the following

$$|(-2)(4)|$$

81. Evaluate the following

$$\left| -\frac{6}{2} \right|$$
.

82. State whether true or false.

$$-|-x| = -(-x).$$

83. State whether true or false.

$$(-x)|x| = x^2.$$

84. State whether true or false.

$$|(-5) + (-7)| = |-5||-7|.$$

85. State whether true or false.

$$|2x| = |-x||x|.$$

86. State whether true or false.

$$|5(-x^2)| = 5|x|^2.$$

87. State whether true or false.

$$|5x| - |3x| = |2x|.$$

88. Solve the equation

$$|x - 4| = 2$$
.

$$|2x - 1| = 3.$$

90. Solve the equation

$$|x+4|=3.$$

$$|4-3x|=2.$$

92. Solve the equation

$$|6-x| = -2.$$

93. Solve the equation

$$|x-1| + |x-3| = 6.$$

$$|x+2| + |x+5| = 7$$

Watch Video Solution

95. Solve the equation

$$|x-3| = |x+1|$$

$$|x-3| = |x-1|$$

97. Solve the equation

$$|x+2| = |x-2|$$

Watch Video Solution

98. Express the following by removing the absolute value sign.

$$|x|<\sqrt{5}$$
.

Watch Video Solution

|x-2| < 6.

100. Express the following by removing the absolute value sign.

 $|x+3| \leq 5$.

$$|2x+1| > 3.$$

102. Express the following by removing the absolute value sign.

$$|5-x|\geq 0.$$

|3x-2| > 2.

104. Express the following by removing the absolute value sign.

|3x - 1|.

$$|4x - 3| > x$$
.

106. Express the following by removing the absolute value sign.

$$|x-1||x+1|<\frac{1}{4}.$$

$$-\sqrt{6} < x < \sqrt{6}.$$

108. Express the following in terms of absolute value.

1 < x < 7.

-5 < x < 1.

110. Express the following in terms of absolute value.

x > 8 or x < 2.

$$-7 \le x \le -3.$$

112. Express the following in terms of absolute value.

$$x \geq -2$$
 or $x \leq -6$.

$$-8 < (x+2) < 12.$$

114. Express the following in terms of absolute value.

$$(a-b) < x < a.$$

$$x > a - b$$
 or $x < a$.

116. Express the following in terms of absolute value.

$$-8 < (x+2) < 10.$$

2x + 1 > 3x.

118. Find the solution sets of the following inequations.

 $5x \geq 3x + 1$.

$$x + 2x < 2$$
.

120. Find the solution sets of the following inequations.

2x < 8.

$$x - 1 > 5$$
.

Watch Video Solution

122. Find the simultaneous solution sets of the following sets of inequations.

$$3y > (2x - 6).$$

$$x > 0$$
.

Watch Video Solution

123. Find the simultaneous solution sets of the following sets of inequations.

$$y < 2x + 5$$

$$y \ge 0$$
.

Watch Video Solution

124. Find the simultaneous solution sets of the following sets of inequations.

$$(2x + y + 4) \ge 0$$

$$x \leq 0, y \leq 0.$$

Watch Video Solution

125. Find the simultaneous solution sets of the following sets of inequations.

$$y > x - 12$$

$$x \geq 0, y \leq 4.$$

126. Find the simultaneous solution sets of the following sets of inequations.

$$y \le 4x, x < 6, y > 0.$$

