©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MTG-WBJEE PHYSICS
 (HINGLISH)

WAVE OPTICS

Wb Jee Workout Mcq S

1. Two identical light waves, propagating in the
same direction, have a phase difference δ.

After they superpose the intensity of the resulting wave will be proportional to
A. $\cos \delta$
B. $\cos (\delta / 2)$
C. $\cos ^{2}(\delta / 2)$
D. $\cos ^{2} \delta$

Answer: C
(Watch Video Solution

2. The light beams of intensities in the ratio of

9:1 are allowed to interfere. What will be the
ratio of the intensities of maxima and minima ?
A. 3:1
B. $4: 1$
C. $25: 9$
D. $81: 1$

Answer: B
3. In Young's double slit experiment the two
slits are d distance apart. Interference pattern
is observed on a screen at a distance D from
the slits. A dark fringe is observed on the screen directly opposite to one of the slits.

The wavelength of light is

> A. $\frac{D^{2}}{2 d}$
> B. $\frac{d^{2}}{2 D}$
> C. $\frac{D^{2}}{d}$
D. $\frac{d^{2}}{D}$

Answer: D

D Watch Video Solution

4. In a Young's experiment, two coherent sources are placed 0.90 mm apart and the fringes are observed one metre away. If is produces the second dark fringe at a distance of 1 mm from the central fringe, the
wavelength of monochromatic light used would be
A. $60 \times 10^{-3} \mathrm{~cm}$
B. $10 \times 10^{-4} \mathrm{~cm}$
C. $10 \times 10^{-5} \mathrm{~cm}$
D. $6 \times 10^{-5} \mathrm{~cm}$

Answer: D
(Watch Video Solution
5. A parallel beam of monochromatic light of wavelength $5000 \AA$ is incident normally on a single narrow slit of width 0.001 mm . The light is focused by a convex lens on a screen placed on the focal plane. The first minimum will be formed for the angle of diffraction equal to
A. 0°
B. 15°
C. 30°
D. 50°

Answer: C

- Watch Video Solution

6. An interference pattern was made by using
red light. If the red light changes with blue
light, the fringes will become
A. Wider
B. narrower
C. Fainter
D. Brighter

Answer: B

D Watch Video Solution

7. A double slit experiment is performed with
light of wavelength 500 nm . A thin film of thickness $2 \mu m$ and refractive index 1.5 is introduced in the path of the upper beam. The location of the central maximum will
A. Remain unshifted
B. Shift downward by nearly two fringes
C. Shift upward by nearly two fringes
D. Shift downward by 10 fringes.

Answer: C

D Watch Video Solution

8. In the Young's doubel slit experiment, a poiint P on the central bright fringe is such that intensity of point P is $1 / 4$ times the maximum intensity, distance between the slits
is d and wavelength λ. Then angular separation of point P is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{\lambda}{d}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{\lambda}{2 d}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{\lambda}{3 d}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{\lambda}{4 d}\right)
\end{aligned}
$$

Answer: C

D Watch Video Solution

9. The maximum number of possible interference maxima for slit-separation equal to twice the wavelength in Young's double-slit experiment is
A. Infinite
B. Five
C. Three
D. Zero

Answer: B
10. If the ratio of the intensity of two coherent

sources is 4 then the visibility
 $\left[\left(I_{\max }-I_{\min }\right) /\left(I_{\max }+I_{\min }\right)\right]$ of the fringes

is
A. 4
B. $4 / 5$
C. $3 / 5$
D. 9

Answer: B

D Watch Video Solution

11. In a Young's double slit experiment, 12
fringes are observed to be formed in a certain segment of the screen when light of wavelength 600 nm is used. If the wavelength of light is changed to 400 nm , number of fringes observed in the same segment of the screen is given by
A. 12
B. 18
C. 24
D. 30

Answer: B

D Watch Video Solution

12. Wavefront is the locus of all points, where the particles of the medium vibrate with the same
A. phase
B. amplitude
C. frequency
D. period

Answer: A

D Watch Video Solution

13. A source emiting two light waves of wavelength 580 nm and 700 nm is used in a young's double slit interference experiment.

The swparation between the slits is 0.20 mm
and the interference is observed on a screen placed at 150 cm from the slits. Find the linear separation between the frist maximum (next to the central maximum) corresponding to the two wavelenghts.
A. 0.8 mm
B. 1.1 mm
C. 0.9 mm
D. 2.1 mm

- Watch Video Solution

14. In a Young's double slit experiment the slit is illuminated by a source having two wavelength of 400 nm and 600 nm . If distance between slits, $d=1 \mathrm{~mm}$, and distance between the plane of the slit and screen, $D=10 m$ then the samllest distance from the central maximum where is complete darkness in :
A. 2 mm
B. 3 mm
C. 12 mm
D. there is o such point

Answer: D

D Watch Video Solution

15. In the figure, if a parallel beam of white
light is incident on the plane of the slits, then
the distance of the white spot on the screen
from O is [assume $d \ll D, \lambda \ll d$]
A. 0
B. $d / 2$
C. $d / 3$
D. $d / 6$

Answer: C

D View Text Solution
16. In YDSE using monochromatic light the
fringe pattern shifts by a certain distance on
the screen when a mica sheet of refractive index 1.6 and thickness 1.964 microns is
introduced in the path of one of the interfering waves. The mica sheet is then removed and the distance between the plane of slits and the screen is doubled. It is found
that the distance between successive maxima
(or minima) now is the same as the observed
fringe shift upon the introduction of the mica
sheet. Calculate the wavelength of the light.
A. $3000 \AA$
B. $4850 \AA$
C. $5892 \AA$
D. None of these

Answer: C

D Watch Video Solution

17. In the ideal double-slit experiment, when a glass-plate(refractive index 1.5) of thickness t is introduced in the path of one of the
interfering beams (wave-length λ), the intensity at the position where the central maximum occurred previously remains unchanged. The minimum thickness of the glass-plate is
A. 2λ
B. $2 \lambda / 3$
C. $\lambda / 3$
D. λ

Answer: A
18. If the first minima in Young's double-slit experiment occurs directly in front of one of the slits (distance between slit and screen
$D=12 \mathrm{~cm}$ and distance between slits
$d=5 \mathrm{~cm})$, then the wavelength of the radiation used can be
A. 2 cm
B. 4 cm
C. 6 cm
D. $\frac{4}{3} \mathrm{~cm}$

Answer: A

D Watch Video Solution

19.

Wavefronts are incident on an interface at an
angle of 30° as shown. Find the angle of the refracted wavefronts.
A. 30°
B. 45°
C. 60°
D. 75°

Answer: B

D View Text Solution

20. Two beams of light having intensities I and

41 interfere to produce a fringe pattern on a screen. The phase difference between the beams is $\pi / 2$ at point A and π at point B . then
the difference between the resultant intensities at A and B is
A. 21
B. 41
C. 51
D. 7I

Answer: B
(Watch Video Solution
21. Consider Fraunhoffer diffraction pattern obtained with a single slit illuminated at normal incidence. At the angular position of the first diffraction minimum the phase difference (in radians) between the wavelets
from the opposite edges of the slit is
A. $\pi / 4$
B. $\pi / 2$
C. 2π
D. π

Answer: C

- Watch Video Solution

22. The blue colour of sky is due to :

A. interference
B. scattering
C. diffraction
D. total internal reflection
23. What is the minimum thickness of thin film required for constructive interference in the reflected light through it ?
(Given, the refractive index of the film $=1.5$,
wavelength of the lilght incident on the film
$=600 \mathrm{~nm}$.
A. 100 nm
B. 300 nm
C. 50 nm

D. 200 nm

Answer: A

D Watch Video Solution

24. A single slit Fraunhoffer diffraction patternn is formed with white light. For what wavelength of light the third secondary maximum in the diffraction pattern coincides
with the second secondary maximum in the patternn of red light of wavelength $6300 \AA$ Å?
A. $4400 \AA$
B. $4100 \AA$
C. $4642.8 \AA$
D. $9100 \AA$

Answer: C

D Watch Video Solution

25. In Young's double slit experiment, the sepcaration between the slits is halved and
the distance between the slits and the screen
is doubled. The fringe width is
A. unchanged
B. halved
C. doubled
D. quadrupled

Answer: D

D Watch Video Solution
26. In a Young's double-slit experment, the fringe width is β. If the entire arrangement is now placed inside a liquid of refractive index μ , the fringe width will become
A. $n \beta$
B. $\frac{\beta}{n+1}$
C. $\frac{\beta}{n-1}$
D. $\frac{\beta}{n}$

Answer: D

27. In a single slit diffraction experiment, the width of the slit is made double its original width. Then the central maximum of the diffraction pattern will become
A. broader and brighter
B. sharper and brighter
C. sharper and fainter
D. broader and fainter

Answer: D

D Watch Video Solution

28. Huygens wave theory allows us to know
A. The wavelength of the wave
B. The velocity of the wave
C. The amplitude of the wave
D. The propagation of wave fronts.
29. If the two slits in Young's double slit experiment are of unequal width, then
A. the bright fringes will have unequal spacing.
B. the bright fringes will have unequal brightness
C. the fringes do not appear
D. the dark fringes are not perfectly dark.

Answer: D

D View Text Solution

30. A micture of light, consisting of
wavelength 590nm and an unknown
wavelength, illuminates Young's double slit and gives rise to two overlapping interference patterns on the scree. The central maximum of both lights coincide. Further, it is obseved that
the third bright fringe of known light coincides with the 4th bright fringe of the
unknown light. From this data, the wavelength of the unknown light is:
A. 393.4 nm
B. 885.0 nm
C. 442.5 nm
D. 776.8 nm

Answer: C
(Watch Video Solution
31. In YDSE, bichromatic light of wavelengths

400 nm and 560 nm
are used. The distance between the slits is 0.1
mm and the distance between the
plane of the slits and the screen is 1 m . The minimum distance between two
successive regions of complete darkness is
A. 4 mm
B. 5.6 mm
C. 14 mm

D. 28 mm

Answer: D

D Watch Video Solution

32. Figure shows plane waves refracted from air to water. Using Huygen's principle, find the, ratio of refractive index of water w.r.t. air from
the diagram, if a, b, c, d, e are lengths on the diagram.
A. a / e
B. b / e
C. b / d
D. d / b

Answer: C

D View Text Solution

33. The Young's double slit experiment has
been shown in figure. Q is the position of the
first bright fringe on the right side from O and

P is the 11th bright fringe on the other side as
measured from Q . if wavelength of the light used is $6000 \AA$, find the distance $S_{1} B$.
A. $6 \times 10^{-6} m$
B. $12 \times 10^{-6} \mathrm{~m}$
C. $18 \times 10^{-6} m$
D. $36 \times 10^{-6} m$

Answer: A
34. In a standard $Y D S E$ apparatus a time film
($\mu=1.5, t=2.1 \mu m$) is placed in front of
upper slit.How far above or below the center
point of the screen are two nearest maximum

located?

Take
$D=1 m, d=1 m m, \lambda=4500 \AA$.(Symbols
have usual meaning).
A. 1.5 mm
B. 0.6 mm
C. 0.15 mm

D. 0.3 mm

Answer: C

D Watch Video Solution

35. In a double slit experiment instead of taking slits of equal widths, one slit is made twice as wide as the other. Then, in the interference pattern
A. the intensities of both the maxima and the minimum increase
B. the intensity of the maxima increases
and the minima has zero intensity
C. the intensity of the maxima decreases
and that of the minima increases
D. the intensity of the maxima decreases
and the minima has zero intensity.

Answer: A

36. A beam of light of wave length 600 nm from a distance source fall on a single slit 1 mm wide and a resulting. Diffraction pattern is observed on a screen 2 m away. The distance between the first dark fringes on either side of central bright fringe is
A. 1.2 cm
B. 1.2 mm
C. 2.4 cm

D. 2.4 mm

Answer: D

- Watch Video Solution

37.

Consider the optical system shown in the
figure that follows. The point source of light S is having wavelength equal to λ. The light is reaching screen only after reflection. For point
P to be 2nd maxima, the value of λ would be $(D \gg d$ and $d \gg \lambda)$.

> A. $\frac{12 d^{2}}{D}$
> B. $\frac{6 d^{2}}{D}$
> C. $\frac{3 d^{2}}{D}$
> D. $\frac{24 d^{2}}{D}$.

Answer: A

D View Text Solution
38. Two coherent narrow slits emitting light of wavelength λ in the same phase are placed parallel to each other at a small separation of 3λ. The light is collected on a screen S which is placed at a distance $D(\gg \lambda)$ from the slits. What will be the order of maxima at point O ?
A. 0
B. 1
C. 2
D. 3

Answer: D

D View Text Solution

39. White light is incident normally on a glass
plate (in air) of thickness 500 nm and refractive index of 1.5 . The wavelength (in $n m$) in the visible region $(400 \mathrm{~nm}-700 \mathrm{~nm})$ that is strongly reflected by the plate is:
A. $4500 \AA$
B. $6000 \AA$

C. $4000 \AA$

D. $4000 \AA$

Answer: B

D Watch Video Solution

40. Two identical radiators have a separation of $d=\lambda / 4$ where λ is the wavelength of the waves emitted by either source. The initial phase difference between the sources is $\lambda / 4$.

Then the intensity on the screen at a distant point situated at an angle $\theta=30^{\circ}$ from the radiators is (here I_{0} is intensity at that point due to one radiator alone)
A. I_{0}
B. $2 I_{0}$
C. $3 I_{0}$
D. $4 I_{0}$

Answer: B
41. The ratio of the intensity at the centre of a bright fringe to the intensity at a point onequarter of the distance between two fringe from the centre is
A. 2
B. $1 / 2$
C. 4
D. 16

Watch Video Solution

42. Consider Fraunhoffer diffraction pattern obtained with a single slit illuminated at normal incidence. At the angular position of the first diffraction minimum the phase difference (in radians) between the wavelets from the opposite edges of the slit is
A. $\pi / 4$
B. $\pi / 2$
C. π
D. 2π

Answer: D

D Watch Video Solution

43. In an interference arrangement similar to

Young's double-slit experiment, the slits
S_{1} and S_{2} are illuminated with coherent microwave sources, each of frequency $10^{6} \mathrm{~Hz}$.

The sources, are synchronized to have zero phase difference. The slits are separated by a
distance $\mathrm{d}=150.0 \mathrm{~m}$. the intensity $I(\theta)$ is measured as a function of θ, where θ is defined
as shown. if I_{0} is the maximum intensity, then
$I(\theta)$ for $0 \leq \theta \leq 90^{\circ}$ is given by
A. $I(\theta)=I_{0} / 2$, for $\theta=30^{\circ}$
B. $I(\theta)=I_{0} / 4$, for $\theta=90^{\circ}$
C. $I(\theta)=I_{0}$, for $\theta=0^{\circ}$
D. $I(\theta)$ is constant for all values of θ.

Answer: C
44. In a double slit experiment, the distance between the slits is 5.0 mm and the slits are 1.0 m from the screen. Two interference patterns can be seen on the screen one due to
light with wavelength 480nm, and the other due to light with wavelength 600 nm . What is the separation on the screen between the third order bright fringes of the two intergerence patterns?
B. 0.05 mm
C. 0.072 mm
D. 0.09 mm

Answer: C

D Watch Video Solution

45. In Young's double slit experiment the fringe width is found to be 0.3 mm . Now if a thin glass plate of refracting index 1.5 is placed in the path of any one of light rays coming
from the slits then the width of the fringe will be
A. zero
B. 0.3 mm
C. 0.45 mm
D. 0.15 mm

Answer: B
(Watch Video Solution
46. In a Young's double slit experiment, the separation between the two slits is d and the wavelength of the light is λ. The intensity of light falling on slit 1 is four times the intensity of light falling on slit 2 . Choose the correct choice (s).
A. If $d=\lambda$ the screen will contain only one
maximum
B. If $\lambda<d<2 \lambda$ at least one more maximum (besides the central
maximum) will be observed on the
screen.
C. If the intensity of light falling on slit 1 is
reduced so that it becomes equal to that
of slit 2, the intensities of the observed
dark and bright fringes will increase
D. if the intensity of light falling on slit 2 is
increased so that it becomes equal to
that of slit 1, the intensities of the
observed dark and bright fringes will increase.

Answer: A::B

D Watch Video Solution

47. White light is used to illuminate the two
slits in a Young's double slit experiment. The separation between the slits is b and the screen is at a distance $d^{\prime}(g t b)$ from the slits. At a point on the screen directly in front of one
of the slits, certain wavelength are missing.

Some of these missing wavelength are

$$
\begin{aligned}
& \text { A. } \lambda=\frac{b^{2}}{d} \\
& \text { B. } \lambda=\frac{2 b^{2}}{d} \\
& \text { C. } \lambda=\frac{b^{2}}{3 d} \\
& \text { D. } \lambda=\frac{2 b^{2}}{d}
\end{aligned}
$$

Answer: A::C

D Watch Video Solution

48. In the Young's double slit experiment, the interference pattern is found to have as intensity ratio between the bright and dark fringes as 9. This implies that
A. the intensities at the screen due to the
two slits are 5 units and 4 units respectively
B. the intensities at the screen due to the
two slits are 4 units and 1 units respectively

C. the amplitude ratio is 1

D. the amplitde ratio is 2

Answer: B::D

D Watch Video Solution

49. The minimum value of d so that there is a
dark fringe at O is $d_{\text {min }}$. The distance at which
are next bright fringe is formed is x. then
A. $d_{\text {min }}=\sqrt{\lambda D}$
B. $d_{\min }=\sqrt{\frac{\lambda D}{2}}$
C. $x=\frac{d_{\text {min }}}{2}$
D. $x=3 d_{\text {min }}$

Answer: B::D

D View Text Solution

50.

Two point monochromatic and coherent sources of light of wavelength λ are each
placed as shown in the figure. The initial phase difference between the sources is zero 0 .
($D \gg d$). Selected the correct statement
(s)
A. If $d=\frac{7 \lambda}{2}$, O will be minima
B. If $d=\lambda$, only one maxima can be observed on screen
C. If $d=4,8 \lambda$ then a total 10 minima
would be there on screen
D. If $d=\frac{5 \lambda}{2}$, then intensity at O would be

Answer: A::B::C::D

D View Text Solution

51. In a YDSE perfromed with light of wavelength $600 \AA$, the screen is placed 1 m
from the slits. Fringes formed on the screen are observed by a student sitting close to the slits. The student's eye can distinguish two neighboring fringes. If they subtend an angle more then 1 minute of ace, then

Find the location of third bright fringe from center of the screen.

> А. $\frac{3}{\pi} \mathrm{~mm}$ В. $\frac{6}{\pi} m m$ C. $\frac{4.5}{\pi} m m$ D. $\frac{6.48}{\pi} \mathrm{~mm}$

Answer: D
(Watch Video Solution
52. In Young's double slit experiment, one of the slit is wider than other, so that amplitude of the light from one slit is double of that from other slit. If I_{m} be the maximum intensity, the resultant intensity I when they interfere at phase difference ϕ is given by:

$$
\begin{aligned}
& \text { A. } \frac{I_{m}}{3}\left(1+2 \cos ^{2} \frac{\phi}{2}\right) \\
& \text { B. } \frac{I_{m}}{5}\left(1+4 \cos ^{2} \frac{\phi}{2}\right) \\
& \text { C. } \frac{I_{m}}{9}\left(1+\cdot \frac{\cos ^{2}(\phi)}{2}\right) \\
& \text { D. } \frac{I_{m}}{9}(4+\cos \phi)
\end{aligned}
$$

Answer: C

- Watch Video Solution

53. If white light is used in a Young's double slit experiment,
A. bright white fringe is formed at the centre of the screen
B. fringes of different colours are observed
clearly only in the first order

C. the first-order violet fringes are closer to

the centre of the screen than the firstorder red fringes

D. the first-order red fringes are closer to

the centre of the screen than the first order violet fringes.

Answer: A::B::C

D Watch Video Solution

54. In Young's double slit experiment, phase difference between the waves at a point on
screen having intensity less than the average intensity on screen may be
A. $\pi / 4$
B. $2 \pi / 3$
C. π
D. $7 \pi / 8$

Answer: B::C::D

55. In the Young's double slit experiment using

a monochromatic light of wavelength λ, the path difference (in terms of an integer n) corresponding to any point having half the peak
A. $(2 n+1) \frac{\lambda}{2}$
B. $(2 n+1) \frac{\lambda}{4}$
C. $(2 n+1) \frac{\lambda}{8}$
D. $(2 n+1) \frac{\lambda}{16}$

Answer: B

- Watch Video Solution

Wb Jee Previous Years Question Mcq S

1. S_{1} and S_{2} are two coherent sources. The
intensity of both sources are same. If the intensity at the point of maxima is $4 \mathrm{Wm}^{-2}$, the intensity of each source is
A. $(3 \lambda, 0)$
B. $(4 \lambda, 0)$
C. $(5 \lambda / 4,0)$
D. $(2 \lambda / 3,0)$

Answer: B

D Watch Video Solution

2. Two coherent monochromatic beams of intensities I and 4 I respectively are superposed. The maximum and minimum intensities in the resulting pattern are
A. 51 and 31
B. 91 and 3I
C. 41 and I
D. 91 and I

Answer: D

D Watch Video Solution

3. A thin plastic of refractive index 1.6 is used to cover one of the slits of a double slit arrangement. The central point omn the
screen is now occupied by what would have been the 7th bright fringe before the plastic was used. If the wavelength of light is 600 nm , what is the thickness (in $\mu \mathrm{m}$) of the plastic?
A. 7
B. 4
C. 8
D. 6

Answer: A

4. Two monochromatic coherent light beams A and B have intensities L and $\frac{L}{4}$ respectively.lf these beams are superposed the maximum and minimum intensities will be

$$
\begin{aligned}
& \text { A. } \frac{9 L}{4}, \frac{L}{4} \\
& \text { B. } \frac{5 L}{4}, 0 \\
& \text { C. } \frac{5 L}{2}, 0 \\
& \text { D. } 2 L, \frac{L}{2}
\end{aligned}
$$

Watch Video Solution

5. In Young's double slit experiment
A. All the bright fringes will be coloured.
B. All the bright fringes will be white.
C. The central fringe will be white
D. No stable interference pattern will be
visible.

Answer: C

D Watch Video Solution
6. In Young's experiment for the interference of light, the separation between the slits is d and the distance of the screen from the slits is
D. if D is increased by 0.5% and d is decreased by 0.3% then for the light of a given wavelength, which one of the following is true ? "The fringe width ..."
A. increases by 0.8%
B. decreases by 0.8%
C. increases by 0.2\%
D. decreases by 0.2\%

Answer: A

D View Text Solution

7. When the frequency of the light used is
changed from $4 \times 10^{14} s^{-1}$ to $5 \times 10^{14} s^{-1}$,
the angular width of the principal (central) maximum in a single slit fraunhoffer diffraction pattern changes by 0.6 radian.

What is the width of the slit (assume that the experiment is performed in vacuum)?

> A. $1.5 \times 10^{-7} m$
> B. $3 \times 10^{-7} \mathrm{~m}$
> C. $5 \times 10^{-7} \mathrm{~m}$
> D. $6 \times 10^{-7} \mathrm{~m}$

Answer: C

D View Text Solution
8. For Fraunhofer diffraction to occur
A. Light source should be at infinity
B. Both source and scree should be at infinity
C. Only the source should be at finite distance
D. both source and screen should be at
finite distance.

D Watch Video Solution

9. Find the right condition(s) for Fraunhofer diffraction due to a single slit
A. Source is at infinite distance and the incident beam has converged at the slit
B. source is near to the slit and the incident beam is parallel.
C. Source is at infinity and the incident
beam is parallel
D. Source is near to the slit and the

incident beam has

Answer: B::C

- Watch Video Solution

