©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MTG IIT JEE FOUNDATION

FOOTSTEPS TOWARDS(CBSE BOARD)

Section A

1. Which particles determine the mass of an atom?
2. How does a proton differ from a neutron?

- Watch Video Solution

3. Arrange the following substances in the increasing order of force of attraction between their particles:

Salt, water, nitrogen

D Watch Video Solution
4. Name the particle whose electronic arrangement is shown in figure.

A. F^{-}
B. N^{3-}
C. Ne
D. O^{2-}
5. Write one limitation of law of definite proportions.

- Watch Video Solution

6. What is solubility ?

- Watch Video Solution

7. Find the atomic number and valency of an element whose atom has the electronic configure 2,8,4.

- Watch Video Solution

8. How many electrons are there in the L-shell of chlorine atom?

- Watch Video Solution

9. Name the proprty of gases due to which it is
possible to fill CNG in cylinders for using as
fuel in cars.

D Watch Video Solution

10. Which of the following are pure substances
?

Milk, iron, water, mercury, wood , air , blood, ink.
11. Choose the solution from the following :

Sea-water, coal, air , soda water.

- Watch Video Solution

12. state one instance where water undergoes
a physical change and one in which it which it undergoes a chemical change .
13. If 12 g of carbon is burnt in the presence of 32 g of oxygen, how much CO_{2} will be formed?

- Watch Video Solution

14. What is the volume of 44 g of CO_{2} at S.T.P.
?

- Watch Video Solution

15. Why are Bohr's orbits called stationary
states ?

- View Text Solution

16. Write down the formula of magnesium oxide.

D Watch Video Solution

17. How will you separate the components of a mixture containing benzene and toluene?

D Watch Video Solution
18. How would you obtain a sample of pure iodine from impure iodine?

D Watch Video Solution

19. Assertion : 1 L of O_{2} gas and 1 L of O_{3} gas
contain the same number of moles under identical conditions.

Reason : Under identical conditions, 1L of O_{2}
gas and 1L of O_{3} gas contain the same number of oxygen atoms.
A. Both A and R are true, and R is correct explanation of the assertion.
B. Both A and R are true, but R is not the correct explanation of the assertion.
C. A is true, but R is false.
D. A is false, but R is true.

Answer: C

D View Text Solution

20. Assertion : Hot water is used for separation of benzoic acid from naphthalene.

Reason : Whenever a crystal is formed it tends to leave out the impurities.
A. Both A and R are true, and R is correct explanation of the assertion.
B. Both A and R are true, but R is not the
correct explanation of the assertion.
C. A is true, but R is false.
D. A is false, but R is true.

Answer: b

D Watch Video Solution

21. Assertion: A solution of table salt in a
glass of water in heterogeneous.

Reason : A solution having same composition
throughout is homogeneous.
A. Both A and R are true, and R is correct explanation of the assertion.
B. Both A and R are true, but R is not the correct explanation of the assertion.
C. A is true, but R is false.
D. A is false, but R is true.

Answer: d

D Watch Video Solution

22. Assertion: The number of electrons gained, lost or shared by the atom of an element so as to complete its octet is called
the valency of the element.

Reason : Elements having the same number of valence electrons in their atoms possess different chemical properties.
A. Both A and R are true, and R is correct explanation of the assertion.
B. Both A and R are true, but R is not the
correct explanation of the assertion.
C. A is true, but R is false.
D. A is false, but R is true.

Answer:

D Watch Video Solution

23. The change in which the shape , size, appearance or state of a subtance may alter
but its chemical composition remains the same is called a physical change . In a physical change, no new substance is formed. Any change that involves the formation of a new substance and leads to a transformation of chemical identity is called a chemical change.

Chemical changes are usually accompanied with heat exchanges. Chemical changes are permanent changes which are usually irreversible.

Which of the following is always true when a substance undergoes a physical change?
A. It changes colour.
B. A new substance is formed
C. It boils
D. Its composition remains the same.

- Watch Video Solution

24. The change in which the shape , size, appearance or state of a subtance may alter but its chemical composition remains the same is called a physical change . In a physical change, no new substance is formed. Any change that involves the formation of a new substance and leads to a transformation of chemical identity is called a chemical change.

Chemical changes are usually accompanied with heat exchanges. Chemical changes are
permanent changes which are usually
irreversible.

Which of the following involves both physical and chemical change?
A. Burning of a candle
B. Rusting of iron
C. Cooking of food
D. Boiling of water

Answer: a

25. The change in which the shape , size, appearance or state of a subtance may alter
but its chemical composition remains the
same is called a physical change . In a physical
change, no new substance is formed. Any
change that involves the formation of a new
substance and leads to a transformation of
chemical identity is called a chemical change.

Chemical changes are usually accompanied
with heat exchanges. Chemical changes are
permanent changes which are usually
irreversible.

An example of a chemical change is
A. formation of clouds
B. glowing of an electric light
C. dropping sodium into water
D. dissolving of salt in water.

Answer: c

D Watch Video Solution

26. The change in which the shape , size, appearance or state of a subtance may alter
but its chemical composition remains the same is called a physical change . In a physical
change, no new substance is formed. Any
change that involves the formation of a new
substance and leads to a transformation of
chemical identity is called a chemical change.
Chemical changes are usually accompanied with heat exchanges. Chemical changes are permanent changes which are usually
irreversible.

Chemical changes are
A.temporar, reversible and a new
substance is produced
B. always accompanied by exchange of
light
C. permanent, irreversible and a new
substance is produced
D. never accompanied by exchange of light
and heat energy.

Answer: c

D Watch Video Solution

27. The change in which the shape , size, appearance or state of a subtance may alter but its chemical composition remains the same is called a physical change . In a physical change, no new substance is formed. Any change that involves the formation of a new substance and leads to a transformation of chemical identity is called a chemical change.

Chemical changes are usually accompanied with heat exchanges. Chemical changes are permanent changes which are usually irreversible.

Select the incorrect statement (s).
(I) Although ice, water and water vapour all
look different and display different physical properties, they are chemically the same.
(II) During burning of a candle, both physical and chemical changes take place.
(III) Both water and cooking oil are liquid but their chemical characteristics are different.

They differe in odour and inflammability.
(IV) It is the physical property of oil that makes
it different from water.
A. I and II
B. II and III
C. I,II and III
D. Only IV

Answer: d

D View Text Solution
28. Each element has a characteristic atomic mass. The atoms are extremely small particles
and it is very difficult to determine their actual masses. For example, mass of one atom of hydrogen has been found to be 1.66×10^{-24}. Obviously, such a small mass cannot be determined even with the help of a very sensitive balance. To overcome, this problem, the atomic masses are expressed as relative masses i.e., with reference to mass of a standard atom. In 1961, the International

Union of Chemists selected the stable isotope
of carbon (carbon -12) as the standard for comparing the atomic and molecular masses of elements and compounds. The atomic mass of the standard, the isotope carbon-12 of carbon is chosen to be 12. Thus, atomic mass may be defined as the relative mass of an atom of the element as compared to an atom of carbon (carbon-12) taken as 12.

Which of the following represents 1 amu ?
A. Mass of C-12 atom
B. Mass of 0-16 atom
C. $1 / 12^{\text {th }}$ of mass of C-12 atom

D. Mass of hydrogen molecule

Answer: c

- Watch Video Solution

29. Each element has a characteristic atomic mass. The atoms are extremely small particles and it is very difficult to determine their actual masses. For example, mass of one atom of hydrogen has been found to be 1.66×10^{-24}.

Obviously, such a small mass cannot be
determined even with the help of a very
sensitive balance. To overcome, this problem,
the atomic masses are expressed as relative masses i.e., with reference to mass of a standard atom. In 1961, the International

Union of Chemists selected the stable isotope of carbon (carbon -12) as the standard for comparing the atomic and molecular masses of elements and compounds. The atomic mass
of the standard, the isotope carbon-12 of carbon is chosen to be 12 . Thus, atomic mass may be defined as the relative mass of an atom of the element as compared to an atom
of carbon (carbon-12) taken as 12.

52 u of He contains

A. $4 \times 6.022 \times 10^{23}$ atoms
B. 13 atoms
C. $13 \times 6.022 \times 10^{23}$ atoms
D. 4 atoms

Answer: c
(Watch Video Solution
30. Each element has a characteristic atomic mass. The atoms are extremely small particles
and it is very difficult to determine their actual
masses. For example, mass of one atom of hydrogen has been found to be 1.66×10^{-24}.

Obviously, such a small mass cannot be determined even with the help of a very sensitive balance. To overcome, this problem, the atomic masses are expressed as relative masses i.e., with reference to mass of a standard atom. In 1961, the International

Union of Chemists selected the stable isotope
of carbon (carbon -12) as the standard for comparing the atomic and molecular masses of elements and compounds. The atomic mass of the standard, the isotope carbon-12 of carbon is chosen to be 12. Thus, atomic mass may be defined as the relative mass of an atom of the element as compared to an atom of carbon (carbon-12) taken as 12.

The relative atomic mass of sodium is
A. the mass of one sodium atom
B. the mass of one sodium ion
C. the mass of one sodium atom compared
with one twelfth the mass of one
carbon-12 atom
D. the average mass of one sodium atom
compared with one twelfth the mass of
one carbon-12 atom.

Answer: d

D Watch Video Solution

31. Each element has a characteristic atomic mass. The atoms are extremely small particles
and it is very difficult to determine their actual masses. For example, mass of one atom of hydrogen has been found to be 1.66×10^{-24}. Obviously, such a small mass cannot be determined even with the help of a very sensitive balance. To overcome, this problem, the atomic masses are expressed as relative masses i.e., with reference to mass of a standard atom. In 1961, the International

Union of Chemists selected the stable isotope
of carbon (carbon -12) as the standard for comparing the atomic and molecular masses of elements and compounds. The atomic mass of the standard, the isotope carbon-12 of carbon is chosen to be 12. Thus, atomic mass may be defined as the relative mass of an atom of the element as compared to an atom of carbon (carbon-12) taken as 12.

Calculate the number of gram atoms in 360 g of magnesium.
A. 15
B. 12
C. 20
D. 18

Answer: a

D Watch Video Solution

32. Each element has a characteristic atomic mass. The atoms are extremely small particles
and it is very difficult to determine their actual
masses. For example, mass of one atom of hydrogen has been found to be 1.66×10^{-24}.

Obviously, such a small mass cannot be determined even with the help of a very
sensitive balance. To overcome, this problem,
the atomic masses are expressed as relative masses i.e., with reference to mass of a standard atom. In 1961, the International

Union of Chemists selected the stable isotope
of carbon (carbon -12) as the standard for comparing the atomic and molecular masses
of elements and compounds. The atomic mass
of the standard, the isotope carbon-12 of carbon is chosen to be 12 . Thus, atomic mass may be defined as the relative mass of an
atom of the element as compared to an atom of carbon (carbon-12) taken as 12.

Arrange the following in the increasing order of mass in grams :
(I) One atom of silver
(II) Two grams atom of nitrogen
(III) One mole of calcium
(IV) Two grams of sodium
[At. masses : $\mathrm{Ag}=108 \mathrm{u}, \mathrm{N}=14 \mathrm{u}, \mathrm{C} a=40 \mathrm{u}, \mathrm{Na}$
$=23 u$]
A. $I<I I<I I I<I V$
B. $I V<I I I<I I<I$

C. $I<I V<I I<I I I$

$$
\text { D. } I I I<I I<I<I V
$$

Answer: c

D Watch Video Solution

33. The maximum number of the electrons which are permitted to be assigned to an energy shell of an atom is called the electron
capacity of that shell. The distribution of electrons in different orbits or shell is
governed by a scheme known as Bohr-Bury
scheme. According to this scheme :
(I) The maximum number of the electrons that
can be present in any shell is given by the formula $2 n^{2}$ where, n is the number of energy level.
(II) The maximum number of electrons that can be accommodated in the outermost shell is 8.

Electrons are filled in the shells in a stepwise manner in increasing order of energy of the energy shell.

What is the maximum electrons capacity of N shell?
A. 24
B. 8
C. 18
D. 32

Answer: d
(Watch Video Solution
34. The maximum number of the electrons
which are permitted to be assigned to an
energy shell of an atom is called the electron
capacity of that shell. The distribution of electrons in different orbits or shell is governed by a scheme known as Bohr-Bury scheme. According to this scheme :
(I) The maximum number of the electrons that
can be present in any shell is given by the formula $2 n^{2}$ where, n is the number of energy level.
(II) The maximum number of electrons that
can be accommodated in the outermost shell is 8 .

Electrons are filled in the shells in a stepwise manner in increasing order of energy of the energy shell.

Identify the element with the configuration K-2,L-8,M-3
A. Aluminium
B. Magnesium
C. Sodium
D. Beryllium

Answer: a

- View Text Solution

35. The maximum number of the electrons which are permitted to be assigned to an energy shell of an atom is called the electron capacity of that shell. The distribution of electrons in different orbits or shell is governed by a scheme known as Bohr-Bury scheme. According to this scheme :
(I) The maximum number of the electrons that
can be present in any shell is given by the formula $2 n^{2}$ where, n is the number of energy level.
(II) The maximum number of electrons that can be accommodated in the outermost shell is 8.

Electrons are filled in the shells in a stepwise manner in increasing order of energy of the energy shell.

Which of the following configuration represent sodium?
A. 2,8,4
B. 2,8,5
C. 2,3
D. $2,8,1$

Answer: d

D View Text Solution

36. The maximum number of the electrons
which are permitted to be assigned to an energy shell of an atom is called the electron
capacity of that shell. The distribution of
electrons in different orbits or shell is
governed by a scheme known as Bohr-Bury
scheme. According to this scheme :
(I) The maximum number of the electrons that
can be present in any shell is given by the
formula $2 n^{2}$ where, n is the number of energy level.
(II) The maximum number of electrons that
can be accommodated in the outermost shell
is 8 .

Electrons are filled in the shells in a stepwise manner in increasing order of energy of the energy shell.

The number of electrons in carbon and
fluorine are respectively
A. 6,9
B. 9,6
C. 4,7
D. 8,8

Answer: a
(Watch Video Solution
37. The maximum number of the electrons
which are permitted to be assigned to an
energy shell of an atom is called the electron
capacity of that shell. The distribution of electrons in different orbits or shell is governed by a scheme known as Bohr-Bury scheme. According to this scheme :
(I) The maximum number of the electrons that
can be present in any shell is given by the formula $2 n^{2}$ where, n is the number of energy level.
(II) The maximum number of electrons that
can be accommodated in the outermost shell is 8 .

Electrons are filled in the shells in a stepwise manner in increasing order of energy of the energy shell.

Which of the following is an accurate illustration of a nitrogen atom?

A.
B.

Answer: a

D Watch Video Solution

38. The knowledge of valencies of various
radicals helps us to write the formulae of
chemical compounds. The total positive charge on positive ions (cations) is equal to the total negative charge on negative ions (anions) in a molecule. Therefore, in writing the
formula of a compound, the positive and negative ions are adjusted in such a way that
the total number of positive charges of positive ions (cations) becomes equal to the total number of negative charges of negative ions (anions) . There is another simple method for writing the formulae of ionic compounds. In this method, the valencies (or positive or negative charges) of the ions can
be 'crossed over' to give subscripts. The purpose of crossing over of charges is to find the number of ions required to equalise the number of positive and negative charges.

Element X has two valencies 5 and 3 and Y has
valency 2. The elements X and Y are most likely to be respectively
A. copper and sulphur
B. sulphur and iron
C. phosphorus and nitrogen
D. nitrogen and iron.

Answer: d

D Watch Video Solution

39. The knowledge of valencies of various
radicals helps us to write the formulae of chemical compounds. The total positive charge on positive ions (cations) is equal to the total negative charge on negative ions (anions) in a molecule. Therefore, in writing the formula of a compound, the positive and negative ions are adjusted in such a way that
the total number of positive charges of positive ions (cations) becomes equal to the total number of negative charges of negative ions (anions) . There is another simple method for writing the formulae of ionic compounds. In this method, the valencies (or positive or negative charges) of the ions can be 'crossed over' to give subscripts. The purpose of crossing over of charges is to find the number of ions required to equalise the number of positive and negative charges.

The formula of the sulphate of an element X is
$X_{2}\left(\mathrm{SO}_{4}\right)_{3}$. The formula of nitride of element X will be
A. $X_{2} N$
B. $X N_{2}$
C. $X N$
D. $X_{2} N_{3}$

Answer: C

- Watch Video Solution

40. The knowledge of valencies of various radicals helps us to write the formulae of chemical compounds. The total positive charge on positive ions (cations) is equal to the total negative charge on negative ions (anions) in a molecule. Therefore, in writing the formula of a compound, the positive and negative ions are adjusted in such a way that
the total number of positive charges of positive ions (cations) becomes equal to the total number of negative charges of negative ions (anions) . There is another simple
method for writing the formulae of ionic compounds. In this method, the valencies (or positive or negative charges) of the ions can be 'crossed over' to give subscripts. The purpose of crossing over of charges is to find the number of ions required to equalise the number of positive and negative charges.

The formula of a compound is $X_{3} Y$. The valencies of elements X and Y will be respectively.
A. 1 and 3
B. 3 and 1
C. 2 and 3
D. 3 and 2

Answer: a

D Watch Video Solution

41. The knowledge of valencies of various radicals helps us to write the formulae of chemical compounds. The total positive charge on positive ions (cations) is equal to the total negative charge on negative ions (
anions) in a molecule. Therefore, in writing the
formula of a compound, the positive and negative ions are adjusted in such a way that
the total number of positive charges of positive ions (cations) becomes equal to the total number of negative charges of negative ions (anions) . There is another simple method for writing the formulae of ionic compounds. In this method, the valencies (or positive or negative charges) of the ions can be 'crossed over' to give subscripts. The purpose of crossing over of charges is to find the number of ions required to equalise the
number of positive and negative charges.

The formula of chloride of a metal M is $M C l_{3}$, then the formula of the phosphate of metal M will be
A. $M P O_{4}$
B. $M_{2} P O_{4}$
C. $M_{3} P O_{4}$
D. $M_{2}\left(P O_{4}\right)_{3}$

Answer: a

42. The knowledge of valencies of various radicals helps us to write the formulae of chemical compounds. The total positive charge on positive ions (cations) is equal to the total negative charge on negative ions (anions) in a molecule. Therefore, in writing the
formula of a compound, the positive and negative ions are adjusted in such a way that
the total number of positive charges of positive ions (cations) becomes equal to the total number of negative charges of negative
ions (anions) . There is another simple method for writing the formulae of ionic compounds. In this method, the valencies (or positive or negative charges) of the ions can be 'crossed over' to give subscripts. The purpose of crossing over of charges is to find the number of ions required to equalise the number of positive and negative charges.

Chlorine reacts with sodium to form the compound NaCl . Chlorine also reacts with phosphorus to form the compound PCl_{3}. What will be the chemical formula of the
compound formed between sodium and phosphorus?
A. $N a_{2} P_{3}$
B. $N a_{3} P$
C. NaP
D. $N a P_{3}$

Answer: b
(D) Watch Video Solution

1. Write down the formula of potassium dichromate.

- Watch Video Solution

2. 10^{22} atoms of an element ' X ' are found to
have a mass of 930 mg . Calculate the molar mass of the element ' X '.

D View Text Solution

3. Can we consider vacuum as matter ?

D Watch Video Solution

4. When a small amount of common salt is added to water in a graduated cylinder, there
is no detectable change in the level of water.

Explain why is it so ?
(D) Watch Video Solution
5. Explain what happens when :
an electric field is passed through a colloidal solution?

D Watch Video Solution

6. Explain what happens when :
a beam of light is passed through a colloidal solution?
7. When alpha rays hit a thin foil of gold, a very few alpha particles are deflected back. What does it prove?

- View Text Solution

8. Which atom does not have any neutron in
the nucleus and why?

D Watch Video Solution

9. What were the observations that led to the conclusion that cathode rays are negatively charged?

D View Text Solution

10. Compute the difference between 10^{3} moles
each of calcium atoms and calcium ions. Which
one is heavier ? (Mass of an electron

$$
\left.=9.1 \times 10^{-31} \mathrm{~kg} .\right)
$$

11. Atomic number of chlorine is 17 and mass
number is 35 . Draw the structure of chlorine
showing the composition of the nucleus as
well as distribution of electrons in different
shells. Also comment on its valency.

- Watch Video Solution

Section C

1. A hot solution contains 5 g of a substance in

15 g of water at $35^{\circ} \mathrm{C}$. What is the solubility of the substance at this temperature?

D Watch Video Solution

2. A beam of light is visible when it is passed
through a colloidal solution, but it is not visible when passed through true solution and suspensions. Explain.
3. Smoke and fog both are aerosols. In what way are they different?

- Watch Video Solution

4. How do sol and gel differ from each other?

Give one example for each.

- Watch Video Solution

5. Classify the following as sol, solution and suspension :
(i) Milk of magnesia (ii) Coloured gemstones
(iii) Aerated drinks (iv) Sand in water

D Watch Video Solution

6. What is the number of valence electrons in
the atom of an element A having atomic number 20? Name the valence shell of this atom.
7. The atomic number and the mass number of an element M are 12 and 24 respectively .

Calculate the number of neutrons in an atom of the element.

- Watch Video Solution

8. Calculate the mass of
(i) one atom of aluminium
(ii) 3.0 mol of Cl^{-}ion
(iii) 10 carbon atoms
(At. Mass : $\mathrm{O}=16 \mathrm{u}, \mathrm{Cl}=35.5 \mathrm{u}, \mathrm{Na}=23 \mathrm{u}, \mathrm{Al}=$ $27 u, C=12 u)$

D Watch Video Solution

9. The diagram shows the apparatus set-up for an experiment. Gas jar (A) contains a brown gas, nitrogren dioxide and gas jar (B) contains hydrogen > The molecular masses of nitrogen dioxide and hydrogen are 46 and 2 respectively.

Niruper answi-k

Describe and explain the follwoing observations in the two gas jars as the experiment proceeds.

The colour of the gas.

D Watch Video Solution

10. The diagram shows the apparatus set-up
for an experiment. Gas jar (A) contains a brown gas, nitrogren dioxide and gas jar (B)
contains hydrogen $>$ The molecular masses of nitrogen dioxide and hydrogen are 46 and 2 respectively.

Describe and explain the follwoing
observations in the two gas jars as the experiment proceeds.

The speed of the gas particles.

- Watch Video Solution

11. The diagram shows the apparatus set-up
for an experiment. Gas jar (A) contains a brown gas, nitrogren dioxide and gas jar (B)
contains hydrogen $>$ The molecular masses of nitrogen dioxide and hydrogen are 46 and 2 respectively.

Describe and explain the follwoing observations in the two gas jars as the experiment proceeds.

The amount of the gases in the gas jars.

- Watch Video Solution

12. A metal M forms an ionic compound X of formula $M_{2}\left(\mathrm{SO}_{4}\right)_{3}$.
(a) Identify the cation in X .
(b) Given the relative formula mass of X is 392 , determine the relative atomic mass of metal
M.
(c) (i) What is the formula of the nitrate of metal M ?
(ii) Calculate the relative formula mass of nitrate compound in (c)(i).

- Watch Video Solution

13. Tell whether each of the following properties describes a heterogeneous mixture,
a solution or a homogeneous mixture, a compound or an element.
(i) A homogeneous liquid which leaves a solid residue on boiling.
(ii) A cloudly liquid which after some time appear more cloudly towards the bottom.
(iii) A uniform white solid that has a sharp and definite melting point which cannot be
decomposed into simpler substances by special techniques.
(iv) A colourless liquid which boils at definite temperature and can be decomposed into simpler substances.

D Watch Video Solution

14. Take three test tubes and label them as A, B
and C. Fill upto two -third with sugar solution,
chalk powder in water and milk, respectively.

Allow these to stand on test tube stand for

some time.

(i) In which of the test tubes will you observe particles settle down?
(ii) Which of the test tubes will look transparent?
(iii) Which of the test tubes will look opaque?

D Watch Video Solution

15. The given table shows the sub-atomic particles of six particles, represented by the letters P to U.
(The letters are not the actual symbols of the particles.)

Particle	Protons	Neutrons	Electrons
P	16	18	18
Q	10	10	10
R	20	20	20
S	20	20	18
T	14	15	18
U	11	12	10

(a) Find the particles which can be
(i) noble gases.
(ii) positive ions.
(iii) negative ions.
(b) Which two particles are an atom and an ion of the same element?
(c) (i) Which particle is the lightest ?
(ii) Which particle is the heaviest?

D Watch Video Solution

Section D

1. Why did Rutherford select a gold foil in his α -ray scattering experiment?

D Watch Video Solution

2. Which of the two will be chemically more reactive? Element X with atomic number 16 or element Y with atomic number 17.

D Watch Video Solution

3. Name the gas which produces anode rays consisting of protons in the discharge tube experiment.

D View Text Solution
4. The nucleus of a gaseous element is represented as ${ }_{y}^{2 y} X$. This gas is used in weather observation balloons. Identify the element.

- Watch Video Solution

5. Atomic number does not change during a chemical reaction. Give reasons.
6. (i) If an atom contains one electron and one proton, will it carry any charge or not ?
(ii) On the basis of Thomson's model of an atom, explain how the atoms is electrically neutral.

D View Text Solution

7. Given that natural sample of iron has
isotopes ${ }_{26}^{54} \mathrm{Fe},{ }_{26}^{56} \mathrm{Fe}$ and ${ }_{26}^{57} \mathrm{Fe}$ in the ratio of $5 \%, 90 \%$ and 5% respectively. What will be the average atomic mass of iron?
8. if you are given a mixture of hydrogen and carbon dioxide, how would you remove the carbon dioxide gas?

- Watch Video Solution

9. How would you separate:
(i) benzene (b.pt. $80^{\circ} \mathrm{C}$) from toluene or methyl benzene (b.pt. $111^{\circ} \mathrm{C}$) with which it is miscible?
(ii) lead sulphate from a mixture of lead sulphate and lead chloride?

D View Text Solution
10. Write the names of the following compounds :
(i) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ (iii) $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$
(iii) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$ (iv) KMnO_{4}
11. A silver ornament of mass 'm' gram is polished with gold equivalent to 1% of the mass of silver. Compute the ratio of the number of atoms of gold and silver in the ornament. [At. Mass : silver $=108 u$, gold $=$ 197u]

D View Text Solution

12. A sample of ethane $\left(C_{2} H_{6}\right)$ gas has the same mass as 1.5×10^{20} molecules of
methane $\left(\mathrm{CH}_{4}\right)$. How many $\mathrm{C}_{2} \mathrm{H}_{6}$ molecules does the sample of gas contain?

D View Text Solution

13. Arrange the following in order of their increasing masses in grams.
(i) 0.1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$
(ii) 10^{23} atoms of carbon
(iii) 1 mole of oxygen molecules
(At masses : $\mathrm{Ag}=108 \mathrm{u}, \mathrm{H}=1 \mathrm{u}, \mathrm{S}=32 \mathrm{u}, \mathrm{O}=$
$16 u, C=12 u)$

Watch Video Solution

14. Which will weigh more 10^{23} molecules of oxygen or 10^{23} molecules of ozone and how many times ? What will be the relationship between their volumes under the same conditions of temperature and pressure?
