©゙doubtnut India's Number 1 Education App

MATHS

BOOKS - MTG IIT JEE FOUNDATION

AREAS OF PARALLELOGRAMS AND TRIANGLES

Illustrations

1. In a parallelogram $A B C D, A B=8 \mathrm{~cm}$. The altitudes corresponding to sides $A B$ and $A D$ are 4 cm and 5 cm respectively. Find $A D$.

- Watch Video Solution

2. $A B C D$ is a quadrilateral and $B D$ is one of its diagonals, as shown in the
figure. Prove that quadrilateral ABCD is a parallelogram, also find its area.

- Watch Video Solution

3. Show that the segment joining the mid-points of a pair of opposite sides of a parallelogram, divides it into two equal parallelograms.
4. Prove that of all parallelograms of which the sides are given, the parallelogram which is rectangle has the greatest area.

- Watch Video Solution

5. Show that a median of a triangle divides it into two triangles of equal areas.

- Watch Video Solution

6. In Figure, $A B C D$ is a quadrilateral and $B E \mid A C$ and also $B E$ meets $D C$ produced at E. Show that area of $A D E$ is equal to the area of the quadrilateral $A B C D$

- Watch Video Solution

7. The diagonals of quadrilateral $A B C D, A C$ and $B D$ intersects at O. Prove that if $B O=O D$ then the triangles $A B C$ and $A D C$ are equal in area.

- Watch Video Solution

8. The area of a trapezium is half the product of its height and sum of parallel sides.

- Watch Video Solution

Solved Examples

1. Which of the following figures lie on the same base and between the same parallels. In such a case, write the common base and the two
parallels.

(i)

(11)

(14)

(Watch Video Solution

2. Compute the area of quadrilateral ABCD.

(Watch Video Solution

3. In the given figure $\angle A O B=90^{\circ}, \mathrm{AC}=\mathrm{BC}, \mathrm{OA}=12 \mathrm{~cm}$ and $\mathrm{OC}=6.5 \mathrm{~cm}$.

Find the area of $\triangle A O B$.

- Watch Video Solution

4. $P Q R S$ is a rectangle inscribed in a quadrant of a circle of radius 13 cm and A is any point on PQ . If $\mathrm{PS}=5 \mathrm{~cm}$, then $\operatorname{ar}(\Delta P A S)=$.

- Watch Video Solution

5. P is any point on the diagonal $B D$ of the parallelogram $A B C D$. Prove that $\operatorname{ar}(\triangle A P D)=\operatorname{ar}(\triangle C P D)$.

- Watch Video Solution

6. $A B C D$ is a quadrilateral. The straight line through C parallel to the diagonal DB intersects $A B$ produced at E . Prove that the $\operatorname{ar}($ quad. $A B C D)=$ $\operatorname{ar}(\triangle A D E)$.

7. In the adjoining figure, MNPQ and ABPQ are parallelogram and T is any point on the side BP. Prove that
(i) $\operatorname{ar}(M N P Q)=\operatorname{ar}(A B P Q)$
(ii) $\operatorname{ar}(\triangle A T Q)=\frac{1}{2} \operatorname{ar}(M N P Q)$.

- Watch Video Solution

8. In Figure, $O C D E$ is a rectangle inscribed in a quadrant of a circle of radius 10 cm . If $O E=2 \sqrt{5}$, find the area of the rectangle.
9. If the diagonals $A C, B D$ of a quadrilateral $A B C D$, intersect at O, and separate the quadrilateral into four triangles of equal area, show that quadrilateral $A B C D$ is a parallelogram.

- Watch Video Solution

10. Show that the area of a rhombus is half the product of the lengths of its diagonals. GIVEN : A rhombus $A B C D$ whose diagonals $A C$ and $B D$ intersect at O. TO PROVE : $\operatorname{ar}($ rhombus $A B C D)=\frac{1}{2}(A C x B D)$

- Watch Video Solution

11. A point D is taken on the side BC of a $\triangle A B C$ such that $B D=2 D C$.

Prove that $\operatorname{ar}(\triangle A B D)=2 a r(\triangle A D C)$

- Watch Video Solution

12. In the given figure, $B C||X Y, B X|| C A$ and $A B|\mid Y C$. Prove that area $(\triangle A B X)=\operatorname{area}(\triangle A C Y)$

- Watch Video Solution

13. In the given figure PSDA is a parallelogram in which $P Q=Q R=R S$ and $A P$ II BQ II CR II VS.Prove that $\operatorname{ar}(\triangle P Q E)=\operatorname{ar}(\triangle D C F)$.

Watch Video Solution
14. $A B C$ is a triangle in which D is the midpoint of $B C$ and E is the midpoint of AD.

Prove that $\operatorname{ar}(\triangle B E D)=\frac{1}{4} \operatorname{ar}(\triangle A B C)$.

- Watch Video Solution

Ncert Section Exercise 91

1. Which of the following figures lie on the same base and between the same parallels. In such a case, write the common base and the two parallels.

(i)
(iii)

(Iv)
(ii)

- View Text Solution

Ncert Section Exercise 92

1. In the given figure $A B C D$ is a parallelogram, $A E \perp D C$ and $C F \perp A D$. If $A B=16 \mathrm{~cm}, A E=8 \mathrm{~cm}$ and CF $=10 \mathrm{~cm}$,find $A D$.

- Watch Video Solution

2. If E, F, G and H are respectively the mid-points of the sides of a parallelogram $A B C D$, show that $\operatorname{ar}(E F G H)=\frac{1}{2} \operatorname{ar}(A B C D)$.

- Watch Video Solution

3. P and Q are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogramABCD. Show that $\operatorname{ar}(A P B)=\operatorname{ar}(B Q C)$.

- Watch Video Solution

4. In the figure, P is a point in the interior of a parallelogram $A B C D$. Show that
(i) $\operatorname{ar}(\triangle A P B)+\operatorname{ar}\left(\triangle P C D=\frac{1}{2} \operatorname{ar}(A B C D)\right.$
(ii) $\operatorname{ar}(\triangle A P D)+\operatorname{ar}(\triangle P B C)=\operatorname{ar}(\triangle A P B)+\operatorname{ar}(\triangle P C D)$

- Watch Video Solution

5. In the figure, PQRS and ABRS are parallelograms and X is any point on side BR. Show that
```
ar(PQRS) = ar(ABRS)
```


- Watch Video Solution

6. In Fig. 9.17, PQRS and ABRS are parallelograms and X is any point on side BR. Show that (i) $a r \backslash(P Q R S) \backslash=\backslash a r \backslash(A B R S)$
$a r \backslash(A X \backslash S) \backslash=\frac{1}{2} \backslash a r \backslash(P Q R S)$

- Watch Video Solution

7. A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q . In how many parts the field is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?

- Watch Video Solution

Ncert Section Exercise 93

1. In the figure, E is any point on median AD of a $\triangle A B C$. Show that ar(
$\triangle A B E)=\operatorname{ar}(\triangle A C E)$.

- Watch Video Solution

2. In a triangle $A B C, E$ is the mid-point of median $A D$. Show that ar $(\triangle B E D)=\frac{1}{4} \operatorname{ar}(\triangle A B C)$.

- Watch Video Solution

3. Show that the diagonals of a parallelogram divide it into four triangles of equal area.

- Watch Video Solution

4. In figure, $A B C$ and $A B D$ are two triangles on the same base $A B$. If line segment $C D$ is bisected by $A B$ at O, show that ar

$(\triangle A B C)=\operatorname{ar}(\triangle A B D)$.

- Watch Video Solution

5. D, E and F are the mid-points of the sides $B C, C A$ and $A B$ of a triangle $A B C$. Show that

BDEF is a parallelogram

- Watch Video Solution

6. D, E and F are respectively the mid-points of the sides $B C, C A$ and $A B$ of a $\triangle A B C$. Show that
$\operatorname{ar}(\triangle D E F)=\frac{1}{4} \operatorname{ar}(\triangle A B C)$

- Watch Video Solution

7. D, E and F are respectively the mid-points of the sides $B C, C A$ and $A B$ of a $\triangle A B C$. Show that
$\operatorname{ar}(\mathrm{BDEF})=\frac{1}{2} \operatorname{ar}(\triangle A B C)$

- Watch Video Solution

8. In the figure, diagonals $A C$ and $B D$ of quadrilateral $A B C D$ intersect at O such that $O B=O D$. If $A B=C D$, then show that

$$
\operatorname{ar}(\Delta \mathrm{DOC})=\operatorname{ar}(\Delta \mathrm{AOB})
$$

- Watch Video Solution

9. In the figur e, diagonals $A C$ and $B D$ of quadrilateral $A B C D$ intersect at 0 such that $O B=O D$. If $A B=C D$, then show that

- Watch Video Solution

10. In the figure, diagonals $A C$ and $B D$ of quadrilateral $A B C D$ intersect at 0 such that $O B=O D$. If $A B=C D$, then show that

DA II CB or ABCD is a parallelogram.

- Watch Video Solution

11. D and E are points on sides $A B$ and $A C$ respectively of $\triangle A B C$ such that $\operatorname{ar}(\Delta \mathrm{DBC})=\operatorname{ar}(\Delta E B C)$. Prove that DE I I BC.

- Watch Video Solution

12. XY is a line parallel to side BC of a triangle ABC . If $B E|\mid A C$ and $C F|\mid A B$ meet XY at E and F respectively, show that
$\operatorname{ar}(A B E)=\operatorname{ar}(A C F)$

- Watch Video Solution

13. The side $A B$ of a parallelogram $A B C D$ is produced to any point P. A line through A and parallel to $C P$ meets $C B$ produced at Q and then parallelogram PBQR is completed. Show that $\operatorname{ar}(A B C D)=a r(P B Q R)$.

Watch Video Solution

14. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at O. Prove that $\operatorname{ar}(\triangle A O D)=\operatorname{ar}(\Delta B O C)$.

- Watch Video Solution

15. In the figure, $A B C D E$ is a pentagon. A line through B parallel to $A C$ meets DC produced at F. Show that

$\operatorname{ar}(\triangle \mathrm{AEDF})=\operatorname{ar}(\triangle \mathrm{ABCDE})$

- Watch Video Solution

16. A villager Itwaari has a plot of land of the shape of a quadrilateral. The Gram Panchayat of the village decided to take over some portion of his plot from one of the corners to construct a Health Centre. Itwaari agrees to the above proposal w
17. $A B C D$ is a trapezium with $A B \| D C$. A line parallel to $A C$ intersects $A B$ at X and $B C$ at Y. Prove that $\operatorname{ar}(\Delta A D X)=\operatorname{ar}(\Delta A C Y)$.

- Watch Video Solution

18. In the given figure, $A P\|B Q\| C R$. Prove that $\operatorname{ar}(\Delta A Q C)=\operatorname{ar}(\Delta P B R)$

19. Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O in such a way that $\operatorname{ar}(\triangle \mathrm{AOD})=\operatorname{ar}(\Delta \mathrm{BOC})$. Prove that ABCD is a trapezium.

- Watch Video Solution

Ncert Section Exercise 94

1. Parallelogram $A B C D$ and rectangle $A B E F$ are on the same base $A B$ and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.

- Watch Video Solution

2. In figure, D and E are Points on side BC of a $\triangle A B C$ such that $\mathrm{BD}=\mathrm{CE}$ and $\mathrm{AD}=\mathrm{AE}$.Show that $\triangle A B D \cong \triangle A C E$.

- Watch Video Solution

3. In the figure, $\mathrm{ABCD}, \mathrm{DCFE}$ and ABFE are parallelograms. Show that $\operatorname{ar}(\Delta$ $A D E)=\operatorname{ar}(\triangle B C F)$.

4. In the figure, $A B C D$ is a parallelogram and $B C$ is produced to a point Q such that $A D=C Q$. If $A Q$ intersect $D C$ at P, show that $\operatorname{ar}(\Delta B P C)=\operatorname{ar}(\Delta$ DPQ).

- Watch Video Solution

5. In figure, $A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of $B C$. If $A E$ intersects $B C$ at F, show that

$\operatorname{ar}(\Delta B D E)=1 / 4 \operatorname{ar}(\Delta A B C)$

- Watch Video Solution

6. In figure, $A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of $B C$. If $A E$ intersects $B C$ at F, show that

$\operatorname{ar}(\Delta B D E)=1 / 2 \operatorname{ar}(\Delta B A E)$

- Watch Video Solution

7. In figure, $A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of $B C$. If $A E$ intersects $B C$ at F, show that

$\operatorname{ar}(\triangle \mathrm{ABC})=2 \operatorname{ar}(\Delta \mathrm{BEC})$

- Watch Video Solution

8. In figure, $A B C$ and BDE are two equilateral triangles such that D is the mid-point of $B C$. If $A E$ intersects $B C$ at F, show that

$\operatorname{ar}(\Delta \mathrm{BFE})=2 \operatorname{ar}(\Delta \mathrm{FED})$
9. Diagonals AC and BD of $\square A B C D$ intersect each other at point P . Show that
$\operatorname{ar}(\triangle A P B) \times \operatorname{ar}(\triangle C P D)=\operatorname{ar}(\triangle A P D) \times \operatorname{ar}(\triangle B P C)$

- Watch Video Solution

10. P and Q are respectively the mid-points of sides $A B$ and $B C$ of a triangle $A B C$ and R is the mid-point of $A P$, show that
$\operatorname{ar}(\Delta \mathrm{PRQ})=1 / 2 \operatorname{ar}(\Delta \mathrm{ARC})$

- Watch Video Solution

11. In $\triangle A B C, \mathrm{P}$ is a point on BC such that $B P: P C=4: 5$ and Q is the mid - point of $B P$. Then area $(\triangle A B Q)$: area $(\triangle A B C)$ is equal to :

- Watch Video Solution

12. $A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of $B C$. Then, $\operatorname{ar}(\triangle B D E)=\frac{1}{2} \operatorname{ar}(\triangle A B C)$.

- Watch Video Solution

13. $A B C$ is a right triangle right angled at A. BCED, ACFG and $A B M N$ aresquares on the sides $B C, C A$ and $A B$ respectively. Line segment $A X \perp D E m e e t s$ BCat Y. Show that:(i) $\Delta M B C \cong \triangle A B D$ (ii) `a r\ (B Y X D) $\backslash=2 \backslash$

- Watch Video Solution

14. $A B C$ is a right triangle right angled at A. BCED, ACFG and $A B M N$ aresquares on the sides $B C, C A$ and $A B$ respectively. Line segment $A X \perp D E m e e t s$ BCat Y. Show that:(i) $\Delta M B C \cong \triangle A B D$ (ii) `a r $\(\mathrm{~B} \mathrm{Y} \mathrm{X}$ D) $\backslash=\ 2 \backslash$

- Watch Video Solution

15. $A B C$ is a right triangle right angled at A. BCED, ACFG and $A B M N$ aresquares on the sides $B C, C A$ and $A B$ respectively. Line segment $A X \perp D E m e e t s$ BCat Y. Show that:(i) $\Delta M B C \cong \triangle A B D$ (ii) `a r\ (B Y X $D) \backslash=\ 2 \backslash$

- Watch Video Solution

16. $A B C$ is a right triangle right angled at A. BCED, ACFG and ABMN aresquares on the sides $B C, C A$ and $A B$ respectively. Line segment $A X \perp D E$ meets BCat Y . Show that:(i) $\triangle M B C \cong \triangle A B D$ (ii) `a r $\mathrm{I}(\mathrm{B} \mathrm{Y} \mathrm{X}$ D) $\backslash=\backslash 2 \backslash$

- Watch Video Solution

17. In Figure, $A B C$ is a right triangle right angled at $A, B C E D, A C F G$ and $A M N$ are square on the sides $B C, C A$ and $A B$ respectively. Line segment $A X \perp D E$ meets $B C$ at Y Show that: $\operatorname{ar}(C Y X E)=2 a r(F C B)$

(D) Watch Video Solution

18. In Figure, $A B C$ is a right triangle right angled at $A, B C E D, A C F G$ and $A M N$ are square on the sides $B C, C A$ and $A B$ respectively. Line segment $A X \perp D E$ meets $B C$ at Y. Show that: $\operatorname{ar}(B Y X D)=a r(A B M N)$

- Watch Video Solution

19. In Figure, $A B C$ is a right triangle right angled at $A, B C E D, A C F G$ and $A M N$ are square on the sides $B C, C A$ and $A B$ respectively. Line segment $A X \perp D E$ meets $B C$ at Y. Show that: $F C B \cong A C E$

- Watch Video Solution

1. The area of a rhombus is $20 \mathrm{~cm}^{2}$. If one of its diagonals is 5 cm , the other diagonal is
A. 5 cm
B. 6 cm
C. 8 cm
D. 10 cm

Answer: C

2. The area of trapezium PQRS in the adjoining figure is

A. $112 \mathrm{~cm}^{2}$
B. $120 \mathrm{~cm}^{2}$
C. $160 \mathrm{~cm}^{2}$
D. $180 \mathrm{~cm}^{2}$

Answer: D

3.

In
the
adjoining
figure,
$\angle A O B=90^{\circ}, A C=B C, O A=10 \mathrm{~cm}$ and $O C=13 \mathrm{~cm} .$. Theareaof $\triangle A$ is

A. $120 \mathrm{~cm}^{2}$
B. $135 \mathrm{~cm}^{2}$
C. $140 \mathrm{~cm}^{2}$
D. $148 \mathrm{~cm}^{2}$

D Watch Video Solution

4. In the adjoining figure, the area of quadrilateral $A B C D$ is

A. $148 \mathrm{~cm}^{2}$
B. $144 \mathrm{~cm}^{2}$
C. $120 \mathrm{~cm}^{2}$
D. $122 \mathrm{~cm}^{2}$

Answer: B
5. In the adjoining figure, $A B C D$ is a parallelogram. Then its area is equal to

A. $9 \mathrm{~cm}^{2}$
B. $12 \mathrm{~cm}^{2}$
C. $15 \mathrm{~cm}^{2}$
D. $36 \mathrm{~cm}^{2}$

Answer: B

D Watch Video Solution

6. Which of the following figures lie on the same base and between the same parallels?
A.

B.

C.
D. all of these

D Watch Video Solution

7. In a parallelogram $A B C D, A B=12 \mathrm{~cm}$ and the altitude corresponding to $A B$ is 8 cm . If $A D=10 \mathrm{~cm}$, then the altitude corresponding to $A D$ is equal to
A. 8.5 cm
B. 9 cm
C. 9.6 cm
D. 10.8 cm

Answer: C

- Watch Video Solution

8. In the given figure, $\angle B A D=\angle \mathrm{ADC}=90^{\circ}$ and $\mathrm{AX} \mid I \mathrm{BC}$. If $\mathrm{AB}=\mathrm{BC}=10$ cm and $\mathrm{DC}=16 \mathrm{~cm}$, then the area of ABCX is

A. $80 \mathrm{~cm}^{2}$
B. $40 \mathrm{~cm}^{2}$
C. $20 \mathrm{~cm}^{2}$
D. $42 \mathrm{~cm}^{2}$

Answer: A

D Watch Video Solution
9. The area of a rhombus if the lengths of whose diagonals are 16 cm and 24 cm , is
A. $180 \mathrm{~cm}^{2}$
B. $184 \mathrm{~cm}^{2}$
C. $198 \mathrm{~cm}^{2}$
D. $192 \mathrm{~cm}^{2}$

Answer: D

- Watch Video Solution

10. The area of a trapezium whose parallel sides are $9 \mathrm{~cm} \& 16 \mathrm{~cm}$ and the distance between these sides is 8 cm , is
A. $60 \mathrm{~cm}^{2}$
B. $72 \mathrm{~cm}^{2}$
C. $56 \mathrm{~cm}^{2}$
D. $100 \mathrm{~cm}^{2}$

Answer: D

- Watch Video Solution

11. In the adjoining figure, $A B C D$ is a quadrilateral in which diag. $B D=14$ cm. If $A L \perp B D$ and $C M \perp B D$ such that $\mathrm{AL}=8 \mathrm{~cm}$ and $\mathrm{CM}=6 \mathrm{~cm}$,
find the area of quad. $A B C D$.

A. $60 \mathrm{~cm}^{2}$
B. $72 \mathrm{~cm}^{2}$
C. $84 \mathrm{~cm}^{2}$
D. $98 \mathrm{~cm}^{2}$

Answer: D

- Watch Video Solution

12. $p A N D q$ are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogram $A B C D$. Show that $\operatorname{ar}(A P B)=\operatorname{ar}(B Q C)$.
A. $\operatorname{ar}(\triangle A P B)$
B. $\operatorname{ar}(\Delta P B C)$
C. $\operatorname{ar}(\Delta A P D)$
D. None of these

Answer: A

13. In the given figure, $A B C D$ and $F E C G$ are parallelograms equal in area. If

$$
\operatorname{ar}(\triangle A Q E)=12 \mathrm{~cm}^{2}, \text { find } \operatorname{ar}(|\mid g m F G B Q)
$$

A. $12 \mathrm{~cm}^{2}$
B. $20 \mathrm{~cm}^{2}$
C. $24 \mathrm{~cm}^{2}$
D. $36 \mathrm{~cm}^{2}$

D Watch Video Solution

14. In figure, ABCD is a parallelogram, $A E \perp D C$ and $C F \perp A D$. If $\mathrm{AD}=$ $12 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm}$ and $\mathrm{CF}=10 \mathrm{~cm}$ find $C D$.

A. 17 cm
B. 12 cm
C. 10 cm
D. 15 cm

Answer: D

15. In a triangle $A B C, E$ is the mid-point of median $A D$. Show that $\operatorname{ar}(B E D)=\frac{1}{4} \operatorname{ar}(A B C)$
A. 2
B. $1 / 4$
C. 4
D. $1 / 2$

Answer: B

16. In figure, $A B C D$ is a trapezium in which $A B$ I I DC. Find the length of $D C$.

A. 17 cm
B. 11 cm
C. 13 cm
D. 15 cm

Answer: C

- Watch Video Solution

17. In the figure, ABCD is a quadrilateral $\mathrm{BD}=20 \mathrm{~cm}$. If $A L \perp B D$ and
$C M \perp B D$ such that $\mathrm{AL}=10 \mathrm{~cm}$ and $\mathrm{CM}=5 \mathrm{~cm}$, find the area of quad.

ABCD.

A. $150 \mathrm{~cm}^{2}$
B. $180 \mathrm{~cm}^{2}$
C. $100 \mathrm{~cm}^{2}$
D. $140 \mathrm{~cm}^{2}$

Answer: A
18. Calculate the area of quad. $A B C D$.

A. $102 \mathrm{~cm}^{2}$
B. $154 \mathrm{~cm}^{2}$
C. $132 \mathrm{~cm}^{2}$
D. $114 \mathrm{~cm}^{2}$

Answer: D
19. In the given figure, $A B \perp A D, B C \perp B D$ and $\mathrm{AD}=9 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $C D=17 \mathrm{~cm}$. Find the area of quadrilateral $A B C D$

A. $112 \mathrm{~cm}^{2}$
B. $114 \mathrm{~cm}^{2}$
C. $119 \mathrm{~cm}^{2}$
D. $117 \mathrm{~cm}^{2}$

Answer: B

- Watch Video Solution

20. If E, F, G and H are respectively the mid-points of the sides of a parallelogram $A B C D$, show that $\operatorname{ar}(E F G H)=\frac{1}{2} \operatorname{ar}(A B C D)$.
A. $1 / 3$
B. 2/3
C. $4 / 3$
D. 3/4

Answer: A

- Watch Video Solution

21. PQRS is an isosceles trapezium in which $\mathrm{PS}=10 \mathrm{~cm}, \mathrm{PQ}=\mathrm{SR}=13 \mathrm{~cm}$ and the distance between $P S$ and $Q R$ is 12 cm . Find the area of the trapezium.
A. $180 \mathrm{~cm}^{2}$
B. $160 \mathrm{~cm}^{2}$
C. $176 \mathrm{~cm}^{2}$
D. $194 \mathrm{~cm}^{2}$

Answer: A

- Watch Video Solution

22. Theorem 9.1 : Parallelograms on the same base and between the same parallels are equal in area.
A. perimeter
B. volume
C. area
D. weight

Answer: C

23. Which of the following figures lie on the same base and between the same parallels?
A.

B.

C.

D. Both (a) and (c)

Answer: D
24. If $P S$ is median of the triangle $P Q R$, then $\operatorname{ar}(\Delta P Q S): \operatorname{ar}(\Delta Q R P)$ is

A. $1: 1$
B. 2 : 1
C. 1:2
D. Can't be determined

Answer: C

25. In parallelogram PQRS, find $S M$.

A. 9 cm
B. 7 cm
C. 5 cm
D. 12 cm

Answer: A

- View Text Solution

26. In a trapezium $A B C D, A B \| D C, A B=a c m$, and $D C=b c m$. If M and N are the midpoints of the nonparallel sides, $A D$ and $B C$ respectively then find the ratio of $\operatorname{ar}($ DCNM $)$ and $\operatorname{ar}($ MNBA $)$.
A. $(3 b+a):(3 a+b)$
B. $(3 a+b):(3 b+a)$
C. $(2 a+3 b):(3 a+b)$
D. $(3 a+2 b):(2 a+3 b)$

Answer: B

- Watch Video Solution

27. In a class, teacher gave two cardboard pieces having equal area which are in the shape of a parallelogram to two groups. Find h .

A. 4.8 cm
B. 9.6 cm
C. 2.2 cm
D. 4.6 cm

Answer: A

28. In the figure, $A B C D$ is a square. E and Fare midpoints of $A D$ and $B C$ respectively. The ratio of areas of $\Delta \mathrm{GAB}$ and $\triangle \mathrm{HAB}$

A. $4: 1$
B. 1: 4
C. 1:2
D. $2: 1$

Answer: D
29. In the given figure, $P Q R S$ is parallelogram, then find the area of $\triangle P Q X$.

A. $80 \mathrm{~cm}^{2}$
B. $40 \mathrm{~cm}^{2}$
C. $120 \mathrm{~cm}^{2}$
D. $60 \mathrm{~cm}^{2}$

Answer: A

- View Text Solution

30. If the area, base and corresponding altitude of a parallelogram are x^{2},
$x-3$ and $x+4$ respectively, then the value of x is
A. 12
B. 13
C. 3
D. 4

Answer: A

- View Text Solution

31. In the given figure, $A D$ is the median and E is any point on $A C$, such that $\operatorname{ar}(\Delta \mathrm{MDE}): \operatorname{ar}(\triangle \mathrm{ABD})=2: 3$, then find the ratio of $\operatorname{ar}(\Delta \mathrm{EDC}): \operatorname{ar}(\Delta$
$A B C)$.

A. $3: 4$
B. 1 : 6
C. $6: 1$
D. $4: 3$

Answer: B

32. The figure formed by joining the midpoints of the adjacent sides of a rectangle of sides 8 cm and 6 cm is a

A. rectangle of area $24 \mathrm{~cm}^{2}$
B. square of area $24 \mathrm{~cm}^{2}$
C. trapezium of area $24 \mathrm{~cm}^{2}$
D. rhombus of area $24 \mathrm{~cm}^{2}$

Answer: D
33. PQRS is a rhombus in which $\angle \mathrm{R}=60^{\circ}$. Then PR : $\mathrm{QS}=$

A. $\sqrt{3}: 1$
B. $\sqrt{3}: \sqrt{2}$
C. $3: 1$
D. $3: 1$

Answer: A

- View Text Solution

34. The lengths of the diagonals of a rhombus are 12 cm and 16 cm . The area of the rhombus is
A. $192 \mathrm{~cm}^{2}$
B. $96 \mathrm{~cm}^{2}$
C. $64 \mathrm{~cm}^{2}$
D. $80 \mathrm{~cm}^{2}$

Answer: B

D View Text Solution

35. In a quadrilateral ABCD , it is given that $\mathrm{BD}=16 \mathrm{~cm}$. If $A L \perp B D$ and $C M \perp B D$ such that $\mathrm{AL}=9 \mathrm{~cm}$ and $\mathrm{CM}=7 \mathrm{~cm}$, then $\operatorname{ar}($ quad. ABCD$)$ is

A. $256 \mathrm{~cm}^{2}$
B. $128 \mathrm{~cm}^{2}$
C. $64 \mathrm{~cm}^{2}$
D. $96 \mathrm{~cm}^{2}$

Answer: B

- View Text Solution

36. In. the figure the angles BAD and ADC are right angles and $A E \| B C$, if $A B=B C=5 \mathrm{~cm}$ and $D C=9 \mathrm{~cm}$, find $A D$.

A. 3 cm
B. 4 cm
C. 12 cm
D. 6 cm

Answer: A

37. $A B C D$ is a parallelogram in which $B C$ is produced to E such that $C E=$ $B C$. $A E$ intersects $C D$ at F.

If $\operatorname{ar}(\triangle D F B)=3 \mathrm{~cm}^{2}$, then find the area of the parallelogram ABCD .
A. $6 \mathrm{~cm}^{2}$
B. $12 \mathrm{~cm}^{2}$
C. $9 \mathrm{~cm}^{2}$
D. $18 \mathrm{~cm}^{2}$

Answer: B

38. A swimming pool, 30 m long has a depth of water of 80 cm at one end and 2.4 m the other end. Find the area of the vertical cross-section of the pool along the length.
A. $54 m^{2}$
B. $48 \mathrm{~m}^{2}$
C. $36 m^{2}$
D. $42 m^{2}$

Answer: B

- Watch Video Solution

39. In a square $P Q R S, X$ and Y are mid points of sides $P S$ and $Q R$ respectively. XY and QS intersect a t 0 . Find the area of $\triangle \mathrm{XOS}$, if $\mathrm{PQ}=8$ cm.
A. $6 \mathrm{~cm}^{2}$
B. $12 \mathrm{~cm}^{2}$
C. $4 \mathrm{~cm}^{2}$
D. $8 \mathrm{~cm}^{2}$

Answer: D

- Watch Video Solution

40. In figure, if $\operatorname{ar}(\triangle \mathrm{ABC})=28 \mathrm{~cm}^{2}$, then find $\operatorname{ar}\left(I I^{g m} \mathrm{AEDF}\right)$.

A. $21 \mathrm{~cm}^{2}$
B. $18 \mathrm{~cm}^{2}$
C. $16 \mathrm{~cm}^{2}$
D. $14 \mathrm{~cm}^{2}$

Watch Video Solution

41. Which of the following statements is false?
A. If the point D divides the side $B C$ of $M B C$ in the ratio $m: n$ then $\operatorname{ar}($ $\Delta A B D): \operatorname{ar}(\Delta A D C)=m: n$.
B. A quadrilateral formed by joining the midpoint of the sides of a quadrilateral in order, is a parallelogram.
C. If P is any point on the median $A D$ of a $\triangle A B C$, then ar $(\triangle A B P) \neq$ ar ($\Delta \mathrm{ACP}$).
D. None of these

Answer: C

- View Text Solution

42. The medians of $\triangle A B C$ intersect at point G . Prove that: area of $\triangle A G B=\frac{1}{3} \times$ area of $\triangle A B C$
A. 4
B. 3
C. 1
D. 2

Answer: B

- Watch Video Solution

43. The perimeter of an isosceles right triangle is $2 p$, its area is
A. $(3-2 \sqrt{2}) p^{2}$
B. $(1-2 \sqrt{2}) p^{2}$
C. $(3+2 \sqrt{2}) p^{2}$
D. $(1+2 \sqrt{2}) p^{2}$

D Watch Video Solution

44. In the figure, the semicirce centered at O has a diam.eter 6 cm . The chord BC is parallel to $A D$ and $B C=\frac{1}{2} A D$. The area of the trapezium ABCD in cm^{2}, is :
A. 4
B. $4 \sqrt{2}$
C. 8
D. $8 \sqrt{2}$

Answer: D

45. In the following figure, $A B$ II $C D$. Diagonals $A C$ and $B D$ intersect at point O . If $B O: O D=1: 3$, then (area of $\triangle A O B) /($ area of $\Delta A B D)=$

A. $1 / 4$
B. 1/9
C. 16
D. 116

Answer: A

1. In $\triangle A B C, \mathrm{D}$ and E are points on AB and AC respectively such that $\mathrm{DE}|\mid \mathrm{BC}$ and DE divides the $\triangle A B C$ into two parts of equal areas. Then ratio of $A D$ and $B D$ is
A. P-4, Q-2, R-3, S-1
B. P-2, Q-4, R-1, S-3
C. P-3, Q-2, R-4, S-1
D. P-1, Q-2, R-3, S-4

Answer: B

- Watch Video Solution

2. In the given figure, $P Q R S$ is a parallelogram. A and B are the mid-point of $\overline{P Q}$ and $\overline{S R}$ respectively. If $P S=B R$, then the quadrilateral $A D B C$ is
a.. \qquad

A. $\mathrm{P}-4, \mathrm{Q}-2, \mathrm{R}-1, \mathrm{~S}-3$
B. P-1, Q-2, R-3, S-4
C. P-2, Q-3, R-1, S-4
D. P-3, Q-1, R-4, S-2

Answer: D

Watch Video Solution

Exercise Assertion Reason Type

1. $A B C D$ is a quadrilateral whose diagonals $A C$ divides it into two parts, equal is area. Then, $A B C D$ is
A. If both assertion and reason are tme and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is trne.

Answer: A

- Watch Video Solution

2. Assertion : If the diagonals of a rhombus are 8 cm and 12 cm , then the area of rhombus is given by $96 \mathrm{~cm}^{2}$.

Reason: Area o f rhombus is $1 / 2 \times d_{1} \times d_{2}$ where d_{1} and d_{2} are the lengths of the diagonals.
A. If both assertion and reason are tme and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is trne.

Answer: D

- Watch Video Solution

3. Assertion : In a parallelogram PQRS, QS is one of the diagonals then $\operatorname{ar}($

$$
\Delta \mathrm{PQS})=\operatorname{ar}(\Delta \mathrm{QRS})
$$

Reason : If a planar region formed by a figure R is made up of two no
noverlapping planar regions formed by figures R_{1} and R_{2}, then $\operatorname{ar}(\mathrm{R})=\operatorname{ar}($ $\left.R_{1}\right)+\operatorname{ar}\left(R_{2}\right)$.
A. If both assertion and reason are tme and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is trne.

Answer: B

- View Text Solution

4. Assertion : If area of $\triangle A B D$ is equal to $24 \mathrm{~cm}^{2}$ then a rea of p arallelogram ABCD is $24 \mathrm{~cm}^{2}$

Reason : If a triangle and a parallelogram are on the same base and between same parallels, then area of the triangle is equ al to h alf of the parallelogram.
A. If both assertion and reason are tme and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is trne.

Answer: D

5. Assertion : In the given fig ure, the point D divides the side $B C$ of $\triangle A B C$ in the ratio $m: n$, then ratio of $\operatorname{ar}(A B D)$ and $\operatorname{ar}(A D C)$ is $m: n$

Reason : Area of triangle $=1 / 2 \times$ Base \times Height
A. If both assertion and reason are tme and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is trne.

Answer: A

- Watch Video Solution

Exercise Comprehension Type

1. $A B C D$ is a trapezium in which $A B \| D C$ a and $D C=40 \mathrm{~cm}$ and $A B=60 \mathrm{~cm}$.

If X and Y a re respectively, the midpoints of $A D$ and $B C$, then

$X Y=$
A. 40 cm
B. 50 cm
C. 60 cm
D. 30 cm

Answer: B

- Watch Video Solution

2. ABCD is trapezium in which $A B|\mid D C, \mathrm{DC}=30 \mathrm{~cm}$ and $\mathrm{AB}=50 \mathrm{~cm}$. If X and Y are, respectively the mid-points of $A D$ and $B C$, prove that $\operatorname{ar}(D C Y X)=\frac{7}{9} \operatorname{ar}(X Y B A)$.
A. Trapezium
B. Parallelogram
C. Rectangle
D. Square
3. ABCD is trapezium in which $A B|\mid D C, \mathrm{DC}=30 \mathrm{~cm}$ and $\mathrm{AB}=50 \mathrm{~cm}$. If X and Y are, respectively the mid-points of $A D$ and $B C$, prove that $\operatorname{ar}(D C Y X)=\frac{7}{9} \operatorname{ar}(X Y B A)$.
A. $1 / 2$
B. 2
C. 11/9
D. $9 / 11$

Answer: D

- Watch Video Solution

4. In the given figure, $A B C D$ and $A E F D$ a re two parallelograms.

$P E=$
A. BP
B. FQ
C. AP
D. CQ

Answer: B

Watch Video Solution
5. In the given figure, $A B C D$ and AEFD a re two parallelograms.

$(\operatorname{ar}(\Delta \mathrm{APE})) /(\operatorname{ar}(\Delta \mathrm{PFA}))=$
A. $(\operatorname{ar}(\Delta \mathrm{QFD})) /(\operatorname{ar}(\Delta \mathrm{PFD}))$
B. $(\operatorname{ar}(\Delta \mathrm{AEF})) /(\operatorname{ar}(\Delta \mathrm{PFD}))$
C. $(\operatorname{ar}(\Delta \mathrm{QFD})) /(\operatorname{ar}(\Delta \mathrm{AEF}))$
D. None of these

Answer: A

6. In the given figure, $A B C D$ and $A E F D$ a re two parallelograms.

$\operatorname{ar}(\Delta \mathrm{PEA})=$
A. $\operatorname{ar}\left(\left|\left.\right|^{g m} \Delta \mathrm{PEA}\right)\right.$
B. $\operatorname{ar}(\triangle \mathrm{PFD})$
C. $\operatorname{ar}(\Delta$ QFD $)$
D. $\operatorname{ar}\left(\left|\left.\right|^{g m} \Delta \mathrm{CQPB}\right)\right.$

Answer: C

Exercise Subjective Problems Very Short Answer Type

1. If P is any point in the interior of a parallelogram $A B C D$, then prove that area of the triangle $A P B$ is less than half the are of parallelogram.

- Watch Video Solution

2. O^{\prime} is any point on diagonal $A C$ of a parallelogram $A B C D$. Prove that :
area of $\triangle A O D=$ area of $\triangle A O B$

- Watch Video Solution

3. $B D$ is one of the diagonals of a quadrilateral $A B C D \cdot A M$ and $C N$ are the perpendiculars from A and C, respectively, on $B D$. Show That $\operatorname{ar}(q u a \ddot{A} B C D)=\frac{1}{2} B D A M+C N$

- Watch Video Solution

4. $A B C D$ is a quadrilateral. A line through D, parallel to $A C$, meets $B C$ produced in P as shown in Figure. Prove that $\operatorname{ar}(A B P)=\operatorname{ar}(Q u a \ddot{A} B C D)$.

- Watch Video Solution

5. If $\operatorname{ar}(\triangle A B C)=16 \mathrm{~cm}^{2}$ then find the area of the triangle formed by joining the mid points of the sides of $\triangle \mathrm{ABC}$.

- Watch Video Solution

6. Find the a rea of a rhombus with length of diagonals as 8 cm and 14 cm

- Watch Video Solution

7. In the adjoining figure, find the area of the parallelogram ABCD.

- Watch Video Solution

8. What is the ratio of areas of two parallelograms on equal bases and between the same parallels?

- Watch Video Solution

9. What can you say about the area of two congruent figures?
10. In $\Delta A B C, D$ is the mid-point of $A B$ and P is any point on $B C$. If $C Q|\mid P D$ meets AB and Q (shown in figure), then prove that $\operatorname{ar}(\triangle B P Q)=\frac{1}{2} \operatorname{ar}(\triangle A B C)$.

- Watch Video Solution

2. $A B C D$ is a trapezium in which $A B$ II $D C$. $D C$ is produced to E such tha t $C E=A B$, prove that $\operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle B C E)$.
3. Prove that the area of an equilateral triangle is equal to $\frac{\sqrt{3}}{4} a^{2}$, where a is the side of the triangle.

- Watch Video Solution

4. In the given figure, ABCD is a parallelogram. E and F are any two points on AB and BC , respectively. Prove that $\operatorname{ar}(\triangle A D F)=\operatorname{ar}(\triangle D C E)$.

- Watch Video Solution

Exercise Subjective Problems Long Answer Type

1. $A B C D$ is a parallelogram. X and Y are mid-points of $B C$ and CD. Prove that $\operatorname{ar}(\triangle A X Y)=\frac{3}{8} \operatorname{ar}\left(| |^{g m} A B C D\right)$
2. The median $B E$ and $C F$ of a triangle $A B C$ intersect at G. Prove that the area of $\triangle G B C=$ area of the quadrilateral AFGE.

- Watch Video Solution

3. $A D$ is a median of triangle $A B C$. G is a mid point of $A D$. If area of triangle ABC is $16 \mathrm{sq} . \mathrm{cm}$. Find the area of triangle GDC

- Watch Video Solution

1. In parallelogram $A B C D, A B=10 \mathrm{~cm}$. The altitudes corresponding to the sides $A B$ and $A D$ are respectively 7 cm and 8 cm . If $A D$ is $k \mathrm{~cm}$. Then value of 4 k is

- Watch Video Solution

2. In the given figure, PQRS is a square and T and U are respectively, the mid-points of PS and $Q R$. Then what is the area of $\triangle O T S$ if $P Q=8 \mathrm{~cm}$?

- Watch Video Solution

3. In the given figure LMNO and PMNQ are two parallelograms. R is any point on side MP . If $\operatorname{ar}(\Delta \mathrm{NRQ})=\mathrm{k}\left[\operatorname{ar}\left(I I^{g m} \mathrm{LMNO}\right)\right]$ then 2 k equals

- Watch Video Solution

4. D is the mid-point of side $B C$ of $\triangle A B C$ and E is the mid-point of $B O$. If O is the mid-point of $A E$, then $\operatorname{ar}(\Delta B O E)=1 / k \operatorname{ar}(\Delta A B C)$. Then k equals
5. In the given figure, $A B C D$ is a trapezium in which $A B=9 \mathrm{~cm}, A D=B C=6$ $\mathrm{cm}, \mathrm{DC}=\mathrm{xcm}$, and distance between AB and DC is $2 \sqrt{5} \mathrm{~cm}$. The value of area of trapezium $A B C D$ is $k \sqrt{5}$. Find the value of k.

- Watch Video Solution

Olympiad Hots Corner

1. In the given figure $A B C D$ is a rectangle and all measurements are in centimeters. Find the area of the shaded region.

A. $240 \mathrm{~cm}^{2}$
B. $205 \mathrm{~cm}^{2}$
C. $105 \mathrm{~cm}^{2}$
D. $95 \mathrm{~cm}^{2}$

Answer: C

- Watch Video Solution

2. In given $\triangle A B C$, AD and BE are medians of triangle which intersect each other at point G. If area of $\Delta B D G$ is $1 \mathrm{~cm}^{2}$, then what is the area of

DCEG?

A. $2 \mathrm{~cm}^{2}$
B. $3 \mathrm{~cm}^{2}$
C. $4 \mathrm{~cm}^{2}$
D. $1 \mathrm{~cm}^{2}$

Answer: A
3. If side of a square is increased by 20% then the percentage increase in its area is
A. 40%
B. 20%
C. 44%
D. 30%

Answer: C

- View Text Solution

4. If each sides of a triangle is doubled then find the ratio of the area of the new triangle thus formed and the given triangle.
A. 1: 2
B. 1:3
C. 1:4
D. 2: 3

Answer: C

- Watch Video Solution

5. In the given figure, $l|\mid B C$ and D is the mid-point of BC . If area
$(\triangle A B C)=a \times$ area $(\triangle E D C)$, then find the value of a.

A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

6. The perimeter of the rectangular field is 206 meter. What will be its area (in m^{2}) if its length is 23 meter more than its breadth ?
A. 1520
B. 2420
C. 2480
D. 2520

Answer: D

D Watch Video Solution

7. A person walked diagonally across a square plot. Approximately, what was the percentage saved by not walking along the edges?
A. 0.35
B. 0.3
C. 0.2
D. 0.25

Answer: B

- View Text Solution

8. The perimeter of a right angled triangle is 24 cm . If its hypotenuse is 10 cm then area of this triangle is
A. $24 \mathrm{~cm}^{2}$
B. $10 \mathrm{~cm}^{2}$
C. $12 \mathrm{~cm}^{2}$
D. $48 \mathrm{~cm}^{2}$
9. In parallelogram $A B C D$, let $A M$ be the altitude corresponding to the base $B C$ and $C N$ the altitude corresponding to the base $A B$. If $A B=10 \mathrm{~cm}$, $A M=6 \mathrm{~cm}$ and $C N=12 \mathrm{~cm}$, then $B C=\ldots \mathrm{cm}$.
A. 20
B. 10
C. 12
D. 5

Answer: A

Watch Video Solution

10. In triangle $A B C, D$ is the midpoint of $A B, E$ is the midpoint of $D B$ and F is the midpoint of BC . If the area of $\triangle A B C$ is 96 , the area of $\triangle A E F$ is
A. 16
B. 24
C. 32
D. 36

Answer: D

- Watch Video Solution

11. In the figure $A B C D$ is a rectangle with $A E=E F=F B$, the ratio of the areas of triangle CEF and that of rectangle $A B C D$ is

A. 1:6
B. 1:8
C. 1: 9
D. 1: 10

Answer: A

- Watch Video Solution

12. If the medians of $\triangle P Q R$ intersect at O , then $\operatorname{ar}(\triangle P O Q)=$

A. ar $(\triangle Q O R)$
B. $\frac{1}{3} \operatorname{ar}(\triangle P Q R)$
C. Both (a) and (b)
D. Neither (a) nor (b)

Answer: C

- Watch Video Solution

13. In the figure, the area of square $A B C D i s 4 \mathrm{~cm}^{2}$ and E any point on $\mathrm{AB}, \mathrm{F}, \mathrm{H}$ and K are the mid point of $D E, C F, D G$, and $C H$ respectively. The area of $\triangle K D C$ is -
A. $\frac{1}{4} c m^{2}$
B. $\frac{1}{8} \mathrm{~cm}^{2}$
C. $\frac{1}{16} \mathrm{~cm}^{2}$
D. $\frac{1}{32} \mathrm{~cm}^{2}$

Answer: B

14. The diagonals of a parallelogram ABCD intersect at a point O. Through O, a line a drawn to intersect $A D$ at P and $B C$ at Q. Show that $P Q$ divides the parallelogram into two parts of equal area.
A. Two parts of equal area
B. Two parts of area in $2: 1$
C. Two parts of area in $1: 3$
D. Two parts of area in $4: 3$

Answer: A

