©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - MTG IIT JEE FOUNDATION

TRIANGLES

Illustrations

1. Prove that $\triangle A B D \cong \triangle A C D$ given that

$$
B D=C D=5 \mathrm{~cm}, \angle A D B=\angle A D C
$$

- Watch Video Solution

2. In Figure O is the mid-point of $a B$ and $C D$. Prove tat $A C=B D$ and $A C \| B D$.

- Watch Video Solution

3. In the figure $A B \| C D, A D$ and $B C$ intersect at o and O is midpoint of AD. Show that
(i) $\triangle A O B \cong \triangle D O C$ and $(i i) O B=O C$.

- Watch Video Solution

4. In quadrilateral $A B C D, A B \| C D$ and $B C \| A D$. Show that
(i) $\triangle A B D \cong \triangle C D B$

- Watch Video Solution

5. In figure $A B=C D, \angle P A C=\angle Q B D$, Prove that
$\triangle A P C \cong \triangle B Q D$

- Watch Video Solution

6. In figure $\angle A B D=\angle A C D, A D$ is bisectyor of $\angle B A C$ and $A D$ meets BC at D . Prove that D is mid-point of BC .

- Watch Video Solution

7. In $\triangle A B C$, the bisector $A D$ of $\angle A$ is perpendicular to side $B C$
(see figure). Show that $\mathrm{AB}=\mathrm{AC}$ or $\triangle A B C$ is isosceles.

8. In an isosceles $\triangle A B C$ with $\mathrm{AB}=\mathrm{AC}, \mathrm{D}$ and E are point on BC such that $B E=C D$. Show that $A D=A E$.

(-) Watch Video Solution

9. In figure P is a point equidistant from the lines I and m intersecting at point A. Show that the line n (along AP) bisects
the angle between I and m .

- Watch Video Solution

Solved Examples

1. Prove that $\Delta A B C$ is isosceles if median AD is perpendicular to

BC.
2. In figure I\|m and M is the mid-point of the line segment $A B$. Prove that M is also the mid-point of line segment CD.

- Watch Video Solution

3. In figure it is given that $B C=C E$ and $\angle 1=\angle 2$. Prove that $\Delta G C B \cong \triangle D C E$.

4. In the figure it is given that $A B=C D$ and $A D=B C$. Prove that $\Delta A B C \cong \triangle C D A$.

- Watch Video Solution

5. $A B C D$ is a parallelogram, if the two diagonals are equal, find the measure of $\angle A B C$.
6. $A D, B E$ and $C F$, the altitudes of $A B C$ are equal. Prove that $A B C$ is an equilateral triangle.

D Watch Video Solution

7. In the adjoining figure, $A B C$ is a triangle and D is any point in its interior. Show that $B D+D C<A B+A C$.

8. In the given figure, $A P \perp Q R, P R>P Q$ and $P Q=P S$.

Show that $A R>A Q$.

- Watch Video Solution

9. In Figure, $A D$ is a median and $B L, C M$ are perpendiculars drawn from B and C respectively on $A D$ and $A D$ produced. Prove that $B L=C M$
10. Suppose line segments $A B$ and $C D$ intersect at O in such a way that $A O=O D$ and $O B=O C$. Prove that $A C=B D$ but $A C$ may not be parallel to $B D$

- Watch Video Solution

11. A point O is taken inside an equilateral four sided figure
$A B C D$ such that its distances from the angular points D and B are equal. Show that $A O$ and $O C$ are in one and the same straight line. GIVEN : A point O inside an equilateral quadrilateral four sided figure $A B C D$ such that $B O=O D$. TO PROVE : $A O$ and $O C$ are in one and the same straight line.

- Watch Video Solution

12.

$(A M+B M+C M+D M)>(A O+B O+C O+D O)$

- Watch Video Solution

13. In figure prove that
$M N+N O+O P+P M>2 M O$

D Watch Video Solution
14. In figure, it is given that $A E=A D$ and $B D=C E$. Prove that $\triangle A E B \cong \triangle A D C$.

- Watch Video Solution

Ncert Section Exercise 71

1. In quadrilateral $\mathrm{ABCD}, \mathrm{AC}=\mathrm{AD}$ and AB bisects $\angle A$ (see figure).

Show that $\triangle A B C \cong \triangle A B D$. What can you say about BC and

BD ?

D Watch Video Solution

2. ABCD is quadrilateral
in
which
$A D=B C$ and $\angle D A B=\angle C B A$ (see figure). Prove that

$\Delta A B D \cong \triangle B A C$

D Watch Video Solution

3. ABCD is quadrilateral
in
which
$A D=B C$ and $\angle D A B=\angle C B A$ (see figure). Prove that

$B D=A C$

- Watch Video Solution

4.

ABCD
is
quadrilateral
in
$A D=B C$ and $\angle D A B=\angle C B A$ (see figure). Prove that
which

$\angle A D B=\angle B C A$.

- Watch Video Solution

5. $A D$ and $B C$ are equal perpendiculars to a line segment $A B$ (see Fig. 7.18). Show that CD bisects AB.
6. I and m are two parallel lines intersected by another pair of parallel lines p and q (see Fig. 7.19). Show that $\triangle A B C \cong \triangle C D A$

- Watch Video Solution

7. Line I is the bisector of an $\angle A$ and B is any point on $\mathrm{I} . \mathrm{BP}$ and BQ are perpendiculars from B to the arms of $\angle A$ (see figure).

Show that:
$\triangle A P B \cong \triangle A Q B$

- Watch Video Solution

8. Line I is the bisector of an $\angle A$ and B is any point on $\mathrm{I} . \mathrm{BP}$ and $B Q$ are perpendiculars from B to the arms of $\angle A$ (see figure).

Show that:
$\mathrm{BP}=\mathrm{BQ}$ or B is equidistant from the arms of $\angle A$.

- Watch Video Solution

9. In the given figure, $A C=A E, A B=A D$ and $\angle B A D=\angle E A C$. Prove that $B C=D E$.

- Watch Video Solution

10. $A B$ is a line segment D and P is its mid-point. D and E are points on the same side of $A B$ such that $\angle B A D=\angle A B E$ and $\angle E P A=\angle D P B$ (see figure). Show that

$\Delta D A P \cong \Delta E B P$

- Watch Video Solution

11. $A B$ is a line segment and P is its mid-point. D and E are points on the same side of $A B$ such that
$\angle B A D=\angle A B E$ and $\angle E P A=\angle D P B$ (see figure). Show that

$$
A D=B E
$$

- Watch Video Solution

12. In right triangle $A B C$, right angled at C, Mis the mid-point of hypotenuse $A B . C$ is joined to M and produced to a point D such that $D M=C M$. Point D is joined to point B (see figure). Show that

$\Delta A M C \cong \triangle B M D$

- Watch Video Solution

13. In right triangle $A B C$, right angled at C, Mis the mid-point of hypotenuse $A B . C$ is joined to M and produced to a point D such that $D M=C M$. Point D is joined to point B (see figure). Show that

$\angle D B C$ is right angle.

- Watch Video Solution

14. In right triangle $A B C$, right angled at C, Mis the mid-point of hypotenuse $A B . C$ is joined to M and produced to a point D such that $D M=C M$. Point D is joined to point B (see figure). Show that

$\Delta D B C \cong \triangle A C B$

- Watch Video Solution

Ncert Section Exercise 72

1. Triangle ABC is an isosceles triangle with $A B=A C$. Bisectors of $\angle B$ and $\angle C$ intersect each other at O . join $A-O$ and prove that
$O B=O C$

- Watch Video Solution

2. In $\Delta A B C, \mathrm{AD}$ is the perpendicular bisector of BC (see Fig. 7.30). Show that $\triangle A B C$ is an isosceles triangle in which $A B=A C$.

- Watch Video Solution

3. $A B C$ is an isosceles triangle in which altitudes $B E$ and $C F$ are drawn to equal sides $A C$ and $A B$ respectively (see Fig. 7.31). Show that these altitudes are equal.

- Watch Video Solution

4. $A B C$ is a triangle in which altitudes $B E$ and $C F$ to sides $A C$ and $A B$ are equal (see figure). Show that

$\triangle A B E \cong \triangle A C F$

- Watch Video Solution

5. $A B C$ is a triangle in which altitudes $B E$ and $C F$ to sides $A C$ and
$A B$ are equal (see figure). Show that

$A B=A C$, i.e., $A B C$ is an isosceles triangle.

- Watch Video Solution

6. $A B C$ and $D B C$ are two isosceles triangles on the same base $B C$
(see Fig. 7.33). Show that $\angle A B D=\angle A C D$

- Watch Video Solution

7. DABC is an isosceles triangle in which $A B \backslash=\backslash A C$. Side BA is produced to D such that $A D \backslash=\backslash A B$ (see Fig. 7.34). Show that $\angle B C D$ is a right angle.

- Watch Video Solution

8. $A B C$ is a right angled triangle in which

$$
\angle B=90^{\circ} \text { and } A B=B C . \text { Find } \angle A \text { and } \angle C .
$$

- Watch Video Solution

9. Show that the angles of an equilateral triangle are 60 oeach.

D Watch Video Solution

1. $\triangle A B C$ and $\Delta D B C$ are two isosceles triangles on the same base $B C$ and vertices A and D are on the same side of $B C$ (see figure). If $A D$ is extended to $B P$ intersect $B C$ at P, show that

$\triangle A B D \cong \triangle A C D$

2. $\triangle A B C$ and $\triangle D B C$ are two isosceles triangles on the same base $B C$ and vertices A and D are on the same side of $B C$ (see figure). If $A D$ is extended to $B P$ intersect $B C$ at P, show that

$\triangle A B P \cong \triangle A C P$
3. $\triangle A B C$ and $\triangle D B C$ are two isosceles triangles on the same base $B C$ and vertices A and D are on the same side of $B C$ (see figure). If $A D$ is extended to $B P$ intersect $B C$ at P, show that

AP bisects $\angle A$ as well as $\angle D$.

- Watch Video Solution

4. $\triangle A B C$ and $\Delta D B C$ are two isosceles triangles on the same base $B C$ and vertices A and D are on the same side of $B C$. If $A D$ is extended to intersect $B C$ at E show that

D Watch Video Solution

5. $A D$ is an altitude of an isosceles triangle $A B C$ in which $A B=A C$.

Show that

AD bisects $B C$
6. $A D$ is an altitude of an isosceles triangle $A B C$ in which $A B=A C$.

Show that

AD bisects $\angle A$

- Watch Video Solution

7. Two sides $A B$ and $B C$ and median $A M$ of one triangle $A B C$ are respectively equal to sides PQ and QR and median PN of $\triangle P Q R$ (see figure). Show that

$\Delta A B M \cong \Delta P Q N$

- Watch Video Solution

8. The sides $A B$ and $B C$ and the median $A D$ of triangle $A B C$ are equal to the sides $P Q$ and $Q R$ and the median $P M$ of triangle $P Q R$ respectively. Prove that the triangles ABC and PQR are congruent.

- Watch Video Solution

9. $B E$ and CF are two equal altitudes of a triangle $A B C$. Using RHS congruence rule, prove that the triangle $A B C$ is isosceles.

- Watch Video Solution

10. ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$. Draw $A P \perp B C$ to show that $\angle B=\angle C$.

-
 Watch Video Solution

Ncert Section Exercise 74

1. Show that in a right angled triangle, the hypotenuse is the longest side.
2. In the given figure, sides $A B$ and $A C$ of $\triangle A B C$ are extended to points P and Q respectively. Also, $\angle P B C<\angle Q C B$. Show that $A C>A B$

3. In the figure $\angle B<\angle A$ and $\angle C<\angle D$. Show that $A D<B C$.

- Watch Video Solution

4. $A B$ and $C D$ are respectively the smallest and longest sides of a quadrilateral ABCD (see the given figure). Show that $\angle A>\angle C$
and $\angle B>\angle D$

5. In the given figure, $P R>P Q$ and $P S$ bisects $\angle Q P R$. Prove that $\angle P S R>\angle P S Q$.

- Watch Video Solution

6. Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.
7. ABC is a triangle. Locate a point in the interior of $\triangle A B C$ which is equidistant from all the vertices of $\triangle A B C$

- Watch Video Solution

2. In a triangle, locate a point in its interior which is equidistant from all the sides of the triangle.

- Watch Video Solution

3. In a huge park, people are concentrated at three points (see figure):

A: where there are different slides and swings for children.
B: near which a man-made lake is situated.

C: which is near to a large parking and exit. Where should an ice cream parlour be set up so that maximum number of persons can approach it?

- Watch Video Solution

4. Complete the hexagonal and star shaped Rangolies (see fig. (i) and (ii)] by filling them with as many equilateral triangles of side 1 cm as you can. Count the number of triangles in each case.

Which has more triangles?

Fis (4)

Fe (ii)

Exercise Multiple Choice Questions Level 1

1. In a $\triangle A B C, A B=5 \mathrm{~cm}, A C=5 \mathrm{~cm}$ and angle $\mathrm{A}=50^{\circ}$, then
$\angle B=$
A. 35°
B. 65°
C. 80°
D. 40°

Answer: B
2. Theorem 7.6 : If two sides of a triangle are unequal, the angle opposite to the longer side is larger (or greater)
A. greater
B. less
C. equal
D. half

Answer: A

- Watch Video Solution

3. In triangle $P Q=Q R, \angle Q P R=48^{\circ}, \angle S R P=18^{\circ}$ then $\angle P Q R=$
A. 48°
B. 84°
C. 30°
D. 36°

Answer:

- Watch Video Solution

4. In the given figure, PQR is an equilateral triangle and QRST is a square. Then $\angle P S R=$

- Watch Video Solution

5. Can we drawn a triangle, $A B C$ with $A B=3 \mathrm{~cm}, B C=3.5 \mathrm{~cm}$ and $\mathrm{Ca}=65 \mathrm{~cm}$?
A. Yes
B. No
C. Can't be determined
D. None of these

Answer: B

- Watch Video Solution

6. Which of the following is not a criterion for congruence of triangles ?
A. SS
B. SAS
C. ASA
D. SSS

- Watch Video Solution

7. In the given figure $A B \perp B E$ and $E F \perp B E$. Also $\mathrm{BC}=\mathrm{DE}$ and $A B=E F$. Then

A. $\triangle A B D \cong \triangle E F C$
B. $\triangle A B D \cong \triangle E F C$
C. $\triangle A B D \cong \triangle C M D$
D. $\triangle A B D \cong \triangle C E F$

Answer: A

- Watch Video Solution

8. In quadrilateral $A B C D, B M$ and $D N$ are drawn perpendicular to
$A C$ such that $B M=D N$. If $B R=8 \mathrm{~cm}$, then $B D$ is

A. 4 cm
B. 2 cm
C. 12 cm
D. 16 cm

Answer: D

- Watch Video Solution

9. In the figure, $A B C$ is an isosceles triangle in which $A B=A C$ and LM is parallel to BC . If $\angle A=50^{\circ}$ find $\angle L M C$.

- Watch Video Solution

10. In the given figure, PS is the median, bisecting angle P , then
$\angle Q P S$ is

A. 110°
B. 70°
C. 45°
D. 55°

Answer: C

- Watch Video Solution

11. In the given figure, x and y are

A. $x=70^{\circ}, y=37^{\circ}$
B. $x=37^{\circ}, y=70^{\circ}$
C. $x+y=117^{\circ}$
D. $x-y=100^{\circ}$

- View Text Solution

12. For the given triangles, write the correspondence, if they are congruent.

A. $\triangle A B C \cong \triangle D E F$
B. $\triangle A B C \cong \triangle E D F$
C. $\triangle A B C \cong \triangle F D E$
D. not congruent

- Watch Video Solution

13. In $\triangle A B C$, if $\angle B<\angle A$ then
A. $B C<C A$
B. $B C<C A$
C. $B C>A B+C A$
D. $A B<C A$

Answer: A

- Watch Video Solution

14. In $\triangle A B C$, if $A B=A C$ and $B D=D C$ (see figure), then $\angle A D C=$

A. 60°
B. 45°
C. 120°
D. 90°

Answer: D

15. Which of the following is a correct statement?
A. Two triangles having same shape are congruent.
B. If two sides of a triangle are equal to the corresponding sides of another triangle, then the two triangles are congruent.
C. If the hypotenuse and one side of one right triangle are equal to the hypotenuse and one side of the other triangle, then the triangles are not congruent.
D. None of these

Answer: D

16. D is a point on the side BC of a $\triangle A B C$ such that AD bisects
$\angle B A C$. Then
A. $B D=C D$
B. $B A>B D$
C. $B D>B A$
D. $C D>C A$

Answer: B

17. In figure, $\angle B<\angle A$ and $\angle C<\angle D$ then

A. $A D<B C$
B. $O D>O C$
C. $O B<O A$
D. None of these

Answer: A

18. Which of the following is a correct statement?
A. In an isosceles triangle, the angles opposite to equal sides are equal.
B. If the hypotenuse and an acute angle of the right-angled triangle are not equal to the hypotenuse and the corresponding acute angle of another triangle, then the triangles are congruent.
C. The bisector of the vertical angle of an isosceles triangle bisects the base at acute angles.
D. All of these

Answer: A

19. In $\triangle A B C$ and $\triangle P Q R$ If $\mathrm{AB}=\mathrm{AC}$,
$\angle C=\angle P$ and $\angle B=\angle Q$, then the two triangles are
A. isosceles but not necessarily congruent
B. isosceles and congruent
C. congruent but not isosceles
D. neither congruent nor isosceles

Answer: A

- Watch Video Solution

20. In $A B C$, side $A B$ is produced to D so that $B D=B C$. If $\angle B=60^{\circ}$ and $\angle A=70^{\circ}$, prove that: $A D>C D$ $A D>A C$
A. $A D>C D$
B. $\angle A D C=90^{\circ}$
C. $A D<C D$
D. $\angle C A D=30^{\circ}$

Answer: A

- Watch Video Solution

21.

In
the
given
figure,
$A B=A C$,
$\angle A=42^{\circ}$ and $\angle A C D=14^{\circ}, \angle B C D$ is equal to

A. 55°
B. 69°
C. 45°
D. 50°

Answer: A

- Watch Video Solution

22. In the given figure, find the measure of $\angle A C D$.

A. 150°
B. 120°
C. 140°
D. 160°

Answer: A

- Watch Video Solution

23. If S is any point on the side QR of a $\triangle P Q R$, then
A. $P Q+Q R+R P>2 P S$
B. $P Q+Q R+R P<2 P S$
C. $P Q+Q R+R P=3 P S$
D. None of these

Answer: C

- Watch Video Solution

24. In the given figure, $A B=B C, A D=C D$. Then, which of the following is true?

A. $\angle A D E=90^{\circ}$
B. $A E=E C$
C. Both (a) and (b)
D. $A E=B C$

Answer: C
25. $A B C$ is a triangle in which $\angle B=2 \angle C D$ is a point on $B C$ such that $A D$ bisects $\angle B A C$ and $A B=C D$. Prove that $\angle B A C=72^{\circ}$.
A. 144°
B. 36°
C. 72°
D. 98°

Answer: C

- Watch Video Solution

26. Which of the following pairs of triangles is congruent?
A. $\triangle A B C: A C=2 \mathrm{~cm}, B C=3 \mathrm{~cm}$ and $\angle 72^{\circ}$
$\triangle D E F: D E=2 \mathrm{~cm}, D F=3 \mathrm{~cm}$ and $\angle D=72^{\circ}$
B. $\triangle A B C: A B=4 \mathrm{~cm}, A C=8 \mathrm{~cm}$ and $\angle A=90^{\circ}$
$\triangle P Q R: P Q=4 c m, Q r=8 \mathrm{~cm}$ and $\angle A=90^{\circ}$
C. $\triangle B C$ and $\triangle D E F$ in which $B C=E F, \angle A=90^{\circ}$,
$\angle B=\angle E=50^{\circ}$ and $\angle F=40^{\circ}$
D. None of these

Answer: C

D View Text Solution

27. In a quadrilateral $\mathrm{ABCD}, \mathrm{AC}$ bisects $\angle C$ and $\mathrm{BC}=\mathrm{CD}$, then which of the following statement is false?
A. $A B=A D$
B. $A C$ is the perpendicular bisector of $B D$.
C. $\triangle D C O \cong \triangle B C O$
D. None of these

Answer: D

- View Text Solution

28. In an isosceles triangle $\triangle A B C$, if $\angle B=70^{\circ}$ find $\angle A$
A. 40°
B. 70°
C. 60°
D. 90°
29. In the given figure, $A B C D$ and $B P Q$ are straight lines. If $B P=B C$ and DQ is parallel to CP . Find $\angle B D Q$

A. 48°
B. 45°
C. 90°
D. 96°

- View Text Solution

30. The vertical angle of an isosceles triangle is 100°. Find its base angles
A. 100°
B. 40°
C. 80°
D. 90°

Answer: B

31. $A B C D$ is a square and $A B E$ is an equilateral triangle outside the square then
A. $\angle A C E=\frac{1}{2} \angle A B E$
B. $\angle A C E=\angle A B E$
C. $\angle A C E=2 \angle A B E$
D. None of these

Answer: A

- Watch Video Solution

32. In given figure, $\angle A=\angle C$ and $A B=B C$. Then which of following is correct?

A. $\angle O E B=\angle O D B$
B. $\triangle A B D \cong \triangle C B E$
C. $\angle A E O=\angle C D O$
D. All of these

Answer: D
33. In given figures, the measure of $\angle B A C$ is

A. 50°
B. 60°
C. 70°
D. 80°

Answer: BWatch Video Solution
34. In a $\triangle A B C$, if $2 \angle A=3 \angle B=6 \angle C$ calculate $\angle A, \angle B$ and $\angle C$
A. $90^{\circ}, 60^{\circ}, 30^{\circ}$
B. $45^{\circ}, 60^{\circ}, 85^{\circ}$
C. $30^{\circ}, 60^{\circ}, 90^{\circ}$
D. $35^{\circ}, 55^{\circ}, 90^{\circ}$

Answer: A

- Watch Video Solution

35. If in $\triangle A B C, A B=A C$ (see figure), BP and CQ be the altitudes from the vertices to their opposite sides, then

A. $B P=C Q$
B. $A P=A Q$
C. $\angle A B C=\angle A C B$
D. All of these

Answer: D

1. The sum of altitudes of a triangle is than the perimeter of the triangle. \qquad
A. greater
B. equal
C. half
D. less

Answer: D

- Watch Video Solution

2. In the given figure, $B D \perp A C$, the measure of $\angle A B C$ is

A. 60°
B. 30°
C. 45°

Answer: D

- Watch Video Solution

3. In figure $A B=A C$, angle $A C M=125^{\circ}$ and anglePAB=x. Find the value of x.

A. 130°
B. 110°
C. 100°
D. 120°

Answer: B

- Watch Video Solution

4. In given figure, $\mathrm{PS}=\mathrm{QR}$ and $\angle S P Q=\angle R Q P$. If $\mathrm{QS}=8 \mathrm{~m}$ then $P R=$

A. 8 m
B. 4 m
C. 16 m
D. None of these

- Watch Video Solution

5. In $\triangle A B C$ if AB is the greatest side then

A. $\angle C>60^{\circ}$
B. $\angle B>60^{\circ}$
C. $\angle A>60^{\circ}$
D. $\angle C<60^{\circ}$

Answer: A

- Watch Video Solution

6. A triangle $A B C$ is an isosceles triangle if any one of the following conditions hold: Altitude $A D$ bisects $\angle B A C$ Bisector of $\angle B A C$ is perpendicular to the base $B C$
A. altitude AD bisects $\angle B A c$
B. Bisector of $\angle B A C$ is perpendicular to the base BC .
C. Both (a) and (b)
D. None of these

Answer: C

- Watch Video Solution

7. In the given figure, $A B=A C, C H=C B$ and $H K \| B C$. If $\angle C A X=137^{\circ}$ and $\angle C H K=K^{\circ}$, then the value of K is......

8. In the given figure $\angle B A C=79^{\circ}, \mathrm{CA}=\mathrm{CB}$ and $\mathrm{BD}=\mathrm{CD}$. Find the measurees of $\angle x, \angle y$ and $\angle z$.

A. $126^{\circ}, 132^{\circ}, 26^{\circ}$
B. $48^{\circ}, 96^{\circ}, 48^{\circ}$
C. $132^{\circ}, 48^{\circ}, 26^{\circ}$
D. None of these

Answer: D

9. In figure, if $Q T \perp P R, \angle T Q R=40^{\circ}$ and $\angle S P R=30^{\circ}$, find value of $y-x$

A. 80°
B. 50°
C. 30°
D. 130°

0

10. O is a point in the interior of a square ABCD such that $\triangle Q A B$
is an equilateral triangle. Show that $\triangle O C D$ is an isoceles triangle .
A. scalene triangle
B. isosceles triangle
C. equilateral triangle
D. right angled triangle

Answer: B

- Watch Video Solution

1. Match the following :
List-I
(P) ${\underset{H}{c}}_{7 \mathrm{~cm}}^{\mathrm{m}}$
List-II
(1) SAS Rule
$\triangle A M B \equiv \triangle A M C$ by
(Q)
(2) RHIS Rule
$\triangle A O B \equiv \triangle P O Q b y$
A. P-2,Q-4, R-1, S-3
B. P-4, Q-2, R-1, S-3
C. P-1, Q-2, R-4, S-3
D. P-2, Q-1, R-3, S-4

Answer: A

- Watch Video Solution

$\triangle A B C \equiv \triangle Q R P$. Match the following :
List-I

List-II
 (1) $\angle Q$
 (2) $Q P$
 (3) $Q R$
 (4) $R P$

(P) $A B=$
(Q) $B C=$
(R) $A C=$
2. (S) $\angle A=$
$\Delta A B C \cong \Delta Q R P$. Match the following :
(P) $A B=$
(1) $\angle Q$
(Q) $\quad B C=$
(2) $Q P$
(R) $\quad A C=$
(3) $Q R$
(S) $\angle A=$
(4) $R P$
A. P-1, $\mathrm{Q}-2, \mathrm{R}-3, \mathrm{~S}-4$
B. P-3, Q-2, R-4, S-1
C. P-3, Q-4, R-2, S-1
D. P-2, Q-3, R-4, S-1

Answer: C

D View Text Solution

Exercise Multiple Choice Questions Assertion Reason Type

1. Assertion : If we draw two triangles with angles $30^{\circ}, 70^{\circ}$ and 80° and the length of the sides of one triangle be different than that of the corresponding sides of the other triangle then two triangles are not congruent.

Reason : If two triangles are constructed which have all corresponding angles equal but have unequal corresponding sides, then two triangles cannot be congruent to each other.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

- View Text Solution

2.

Assertion
In
$\triangle A B C$ and $\triangle P Q R, A B=P Q A C=P R$ and $\angle B A C=\angle Q P R$
$\therefore \triangle A B C \cong \triangle P Q R$

Reason : Both the triangles are congruent by SSS congruence.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

3. Assertion : In a quadrilateral $\mathrm{ACBD}, \mathrm{AC}=\mathrm{AD}$ and AB bisects $\angle A$ (see figure) then $\triangle A C B \cong \triangle A D B$ by SAS congruence criteria.

Reason : Two triangles are congruent if two sides and the included angle of one triangle is equal to the corresponding two sides and included angle of the other.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

- Watch Video Solution

4. Assertion: In triangles $A B C$ and $P Q R$,
$\angle A=\angle P, \angle C=\angle R$ and $A C=P R$. The two triangles are congruent by ASA congruence.

Reason : If two angles and included side of a triangle are equal to the corresponding angles and side of the other triangle then the triangles are congruent by ASA congruence criteria.
(a) Assertion and reason both are correct and reason is the correct explanation for the assertion.
(b) Assertion and reason both are correct and reason is not the correct explanation for the assertion.
(c) Assertion is correct but reason is wrong.
(d) Reason is correct but assertion is wrong.
5. Assertion: In $\triangle A B C, A B=A C$ and $\angle B=50^{\circ}$, then $\angle C$ is 50°

Reason : In a triangle, angles opposite to equal sides are equal.
(a) Assertion and reason both are correct and reason is the correct explanation for the assertion.
(b) Assertion and reason both are correct and reason is not the correct explanation for the assertion.
(c) Assertion is correct but reason is wrong.
(d) Reason is correct but assertion is wrong.

- Watch Video Solution

Exercise Multiple Choice Questions Comprehension Type

1. In the adjoining figure, $A B>A C$ and the angle bisectors of $\angle B$ and $\angle C$ meet at point P. Prove that $P B>P C$.

A. $P C<P B$
B. $P C>P B$
C. $P C=P B$
D. None of these

Answer: A
2. In any triangl, the side opposite to the greater angle is longer.

In $\triangle A B C$ if $\angle C>\angle B$ then
A. $B C>A C$
B. $A B>A C$
C. $A B<A C$
D. $B C<A C$

(Watch Video Solution

3. In any triangl, the side opposite to the greater angle is longer.

In a $\triangle A B C$, if $\angle A=45^{\circ}, \angle B=70^{\circ}$. The largertst side of a triangle is
A. BC
B. $A B$
C. AC
D. None of these

Answer: C

- Watch Video Solution

Exercise Multiple Choice Questions Passage

1. If the altitudes from two vertices of a triangle to the opposite sides are equal, prove that the triangle is isosceles.
A. isosceles
B. scalene
C. right-angled
D. equilateral

Answer: A

2. If in two right triangles, the hypotenuse and one side of one triangle are equal to the hypotenuse and one side of the other triangle, then the two triangles are congruent. 1.
In the figure, it is given that
$L M=M N, Q M=M R, M L \perp P Q$ and $M N \perp P R$. then

A. $P Q<P R$
B. $P Q>P R$
C. $P Q=P R$
D. None of these

Answer: C

- Watch Video Solution

3. If in two right triangles, the hypotenuse and one side of one triangle are equal to the hypotenuse and one side of the other triangle, then the two triangles are congruent. 1.

PL is an altitude from P of $\triangle P Q R$ on QR such that $\mathrm{QL}=\mathrm{LR}$. Then,
A. $\angle Q<\angle R$
B. $\angle Q=\angle R$
C. $\angle Q>\angle R$
D. $\angle P=\angle R$

Answer: B

- Watch Video Solution

Exercise Subjective Problems Very Short Answer Type

1. In Figure, it is given that $A B=C F, E F=B D$ and $\angle A F E=\angle C B D$. Prove that $A F E \cong C B D$.

D Watch Video Solution

2. In Figure, X and Y are two points on equal sides $A B$ and $A C$ of a $A B C$ such that $A X=A Y$. Prove that $X C=Y B$.

(-) Watch Video Solution

3. In the figure, diagonal $A C$ of a quadrilateral $A B C D$ bisects the angles A and C. Prove that $A B=A D$ and $C B=C D$.

- Watch Video Solution

4. In $\triangle A B C$, if AD is the bisector of $\angle A$, show that $A B>B D$ and $A C>D C$.

(-) Watch Video Solution

5. In the figure, $A D=B C$ and $B D=C A$. Prove that $\angle A D B=\angle B C A$ and $\angle D A B=\angle C B A$.

- Watch Video Solution

6. In a $\triangle A B C$, if $\angle A=40^{\circ}$ and $\angle B=60^{\circ}$ then which side of the triangle is longest and which is shortest?

- Watch Video Solution

7. Is it possible to draw a triangle with sides of length $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 8 cm ?
8. D is a point on side $B C$ of triangle $A B C$ such that $A D=A C$ (see figure). Show that $A B>A D$.

- Watch Video Solution

9. In quadrilateral $A B C D, A B=A D$ and $B C=C D$. Show that $\angle A B C=\angle A D C$.

D Watch Video Solution

Exercise Subjective Problems Short Answer Type

1. If the bisector of the vertical angle of a triangle bisects the base, prove that the triangle is isosceles.
2. In the adjoining figure, $\angle A Y Z=\angle B Y X=90^{\circ}, A Y=Y Z$ and $X Y=B Y$. Prove that $A B=Z X$.

(Watch Video Solution

3. In the given figure, $A B C D$ is a square and P is a point inside it such $P B=P d$. Prove that CPA is a straight line.

(D) Watch Video Solution

4. $A B$ is a line segment, $A X$ and $B Y$ are two equal line segments drawn on opposite sides of line $A B$ such that $A X \| B Y$. If $A B$ and XY intersect each other at P, prove that
$\triangle A P X \cong \triangle B P Y$
5. In the given figure, $Q T \perp P R$ and $\mathrm{QS}=\mathrm{PS}$. If $\angle T Q R=40^{\circ}$ and $\angle R P S=20^{\circ}$ then find value of x.

- Watch Video Solution

6. In the figure, $\angle Q P R=\angle P Q R$ and M and N are respectively on sides QR and PR such that $\mathrm{QM}=\mathrm{PN}$. Prove that $\mathrm{OP}=\mathrm{OQ}$, where
O is the point of intersection of PM and QN .

- Watch Video Solution

7. In the figure $A B=A C, \angle A C M=140^{\circ}$ and $\angle P A B=x$.

Find the value of x.

- Watch Video Solution

8.

In
the
figure,
show
that
$2(A C+B D)>A B+B C+C D+D A$.

- Watch Video Solution

9. In a right angled triangle, one acute angle is double the other. Prove that the hypotenuse is double the smallest side.

- Watch Video Solution

10. In figure, it is given that $R T=T S, \angle 1=\angle 4$ and $\angle 3=\angle 2$. Prove that $\Delta R B T \cong \Delta S A T$.

- Watch Video Solution

Exercise Subjective Problems Long Answer Type

1. In the figure $, B L \perp A C, M C \perp L N, \mathrm{AL}=\mathrm{CN}$ and $\mathrm{BL}=\mathrm{CM}$.

Prove that: $\triangle A B C \cong \triangle N M L$

- Watch Video Solution

2. If two isosceles triangles have a common base, prove that the line segment joining their vertices bisects the common base at right angles.

- Watch Video Solution

3. The image of an object placed at a point A before a plane mirror LM is seen at the point B by an observer at D, as shown in
the figure. Prove that the image is as far behind the mirror as the object is in front of the mirror.

- Watch Video Solution

4. $A B$ and $C D$ are respectively the smallest and largest sides of a quadrilateral ABCD . Show that $\angle A>\angle C$ and $\angle B>\angle C$.

5. In Figure, T is a point on side $Q R$ of $P Q R$ and S is a point such that $R T=S T$. Prove That : $P Q+P R>Q S$

- Watch Video Solution

Exercise Subjective Problems Integer Numerical Value Type

1. The vertical angle of an isosceles triangle is 110°. What is value of product of the digits in the measure of one of the equal angles?

- Watch Video Solution

2. Congruence of Triangles
3. In $\triangle A B C$ if $A B=A C$ and $\angle B=70^{\circ}$, then $\angle C=2 a^{\circ}$.

Find the value of a

- Watch Video Solution

4. An exterior angle of a triangle is 110°, and one of the interior opposite angle is 30°. Then the other interior angle is $\mathrm{K} \times 40^{\circ}$.

Find K .

- Watch Video Solution

5. In $\triangle P Q R, \angle R=\angle P$ and $Q R=4 \mathrm{~cm}$ and $P R=5 \mathrm{~cm}$

Then find the value of length of $P Q \times Q R \times P R$.

Olympaid Hots Corner

1. If $\triangle A B C$ is an obtuse angled triangle in which $\angle C=110^{\circ}$ then which one of the following is true?
A. $A B=A C$
B. $A B<A C$
C. $A B>A C$
D. $A B<B C$

Answer: C

- Watch Video Solution

2. In the given figure, if $\mathrm{ED}=\mathrm{EC}$ and $\angle A D F=\angle B C G$, then
$\triangle A B E$ is a/an

A. Equilateral triangle
B. Isosceles triangle
C. Scalene triangle
D. Non-isosceles right angled triangle

Answer: B

- Watch Video Solution

3. In the given figure, O is the centre of cirlce. If $\angle B A O=35^{\circ}$ and $\angle B C O=45^{\circ}$ then the value x x will be

A. 160
B. 170
C. 80
D. 140

Answer: A

- Watch Video Solution

4. In the given figure $\angle=62^{\circ}, \angle N M O=29.5^{\circ}$. If MO and NO are bisectors of $\angle L M N$ and $\angle L M N$ respecgively of $\triangle L M N$,
find $\angle O N M$ and $\angle M O N$.

A. $27^{\circ}, 121^{\circ}$
B. $64^{\circ}, 32^{\circ}$
C. $64^{\circ}, 121^{\circ}$
D. $29.5^{\circ}, 121^{\circ}$

Answer: D
5. From a point O in the interior of a `DeltaABC perpendiculars $O D, O E$ and $O F$ are drawn to the sides $B C, C A$ and $A B$ respectively, then which one of the following is true ?
A. $A B+A C>O B+O C$
B. $A B+B C+C A t O A+O B+O C$
C. $O A+O B+O C>\frac{1}{2}(A B+B C+C A)$
D. None of these

Answer: D

- Watch Video Solution

6. In an isosceles $\triangle A B C$ with $\mathrm{AB}=\mathrm{AC}, \mathrm{D}$ and E are point on BC
such that $B E=C D$. Show that $A D=A E$.

A. $A D=A B$
B. $A E=D E$
C. $A D=D E$
D. $A D=A E$

Answer: D

7. If D is the mid-point of the hypotenuse $A C$ of a right triangle $A B C$, prove that $B D=\frac{1}{2} A C$
A. $\frac{1}{2} A B$
B. $\frac{1}{2} A D$
C. $\frac{1}{2} A C$
D. None of these

Answer: C

8. In the given figure, the value of $\angle P X R$ is

A. 85°
B. 100°
C. 95°
D. 120°

D View Text Solution

9. In the given figure, if O is centre of circle, then $\angle P Q R=$

- Watch Video Solution

10. In the given figure, it is given that
(i) $A B \perp B F, C Z \perp B F$ and $E F \perp B F$
(ii) $\mathrm{AC}=\mathrm{BC}$
(iii) $K D$ is perpendicular to $B C$ and $D E$.

Find the
measure of x.
A. 75°
B. 30°
C. 60°
D. 45°

