đず doubtnut

PHYSICS

BOOKS - MTG IIT JEE FOUNDATION

FOOTSTEPS TOWARDS JEE MAIN

Section A Multiple Choice Question

1. A person takes time to go once around a
circular path of diameter $2 R$. The speed (v) of
this person would be
A. $\frac{t}{2 \pi R}$
B. $\frac{2 \pi R}{t}$
C. $\frac{\pi R^{2}}{t}$
D. $2 \pi R t$

Answer: B

D Watch Video Solution

2. A truck and a car are moving with velocity v towards each other. They collide head in and stops after some time. If the time of collision
is 1 sec , which vehicle will have maximum
change in momentum?
A. Car
B. Truck
C. Both will have same

D. None of these

Answer: C

- Watch Video Solution

3. Recoil velocity of gun is

A. equal to velocity of bullet
B. much greater than velocity of bullet
C. much smaller than velocity of bullet
D. cannot say

Answer: C
4. The acceleration due to gravity g and density of the earth ρ are related by which of the following relations? (where G is the gravitational constant and R_{E} is the radius of the earth)

$$
\begin{aligned}
& \text { A. }\left(\frac{g}{G}\right) \frac{4 \pi}{3} R_{e}^{3}=\rho \\
& \text { B. } \frac{\left(\frac{g}{G}\right)}{\frac{4 \pi}{3} R_{e}}=\rho \\
& \text { C. } \frac{g}{G}\left(\frac{4 \pi}{93}\right) R_{e}^{2}=\rho \\
& \text { D. } \frac{\left(\frac{g}{G}\right)}{\left(\frac{4 \pi}{3} R_{e}^{3}\right)}=\rho
\end{aligned}
$$

Answer: B

- Watch Video Solution

5. A vibrator generates the waves of the speed
$330 \mathrm{~m} / \mathrm{s}$ and wavelength 0.8 m . Then the
frequency and time period are
A. $264 \mathrm{~Hz}, 0.0037 \mathrm{~s}$
B. $42.5 \mathrm{~Hz}, 0.0024 \mathrm{~s}$
C. $412.5 \mathrm{~Hz}, 0.0024 \mathrm{~s}$
D. $264 \mathrm{~Hz}, 0.0030 \mathrm{~s}$

Answer: C

D Watch Video Solution

6. The velocit-time graph of a body moving in a
straight line is shown in Fig. 2 (d) . 32. Find the
displacement and the distance travelled by the body in 6 sec onds.

A. $8 \mathrm{~m}, 16 \mathrm{~m}$
B. $16 \mathrm{~m}, 8 \mathrm{~m}$
C. $16 \mathrm{~m}, 16 \mathrm{~m}$
D. $8 \mathrm{~m}, 8 \mathrm{~m}$

Answer: A

D Watch Video Solution
7. While opening a tap with two fingers, the forces applied are
A. equal in magnitude
B. parallel to each other
C. opposite in direction
D. all of these

Answer: D

D Watch Video Solution

8. Two balls of different masses have the same kinetic energy. Then the
A. heavier ball has greater momentum than
the lighter ball
B. lighter ball has greater momentum than
the heavier ball
C. both balls have equal momentum
D. both balls have zero momentum

Answer: A

D View Text Solution

9. A metallic sphere of mass 2.0 kg and
volume $\quad 2.5 \times 10^{-4} m^{3} \quad$ is completely
immersed in water. Find the buoyant force exerted by water on the sphere

Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
A. 2.45 N
B. 0.25 N
C. 20 N
D. 30 N

Answer: A
10. A stone is dropped into a well 44.1 deep.

The sound of splash is heard 0. 13 seconds after the stone hits the water. What should be the velocity of sounds in air .
A. $319 \mathrm{~m} / \mathrm{s}$
B. $339 \mathrm{~m} / \mathrm{s}$
C. $359 \mathrm{~m} / \mathrm{s}$
D. $369 \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

11. An object is sliding down an inclined plane.

The velocity changes at a constant rate from
$10 \mathrm{~cm} / \mathrm{s}$ to $15 \mathrm{~cm} / \mathrm{s}$ in two seconds. What is its acceleration?

A. $10 \mathrm{~cm} / \mathrm{s}^{2}$
B. $2.9 \mathrm{~cm} / \mathrm{s}^{2}$
C. $2.5 \mathrm{~cm} / \mathrm{s}^{2}$
D. $40 \mathrm{~cm} / \mathrm{s}^{2}$

Answer: C

D Watch Video Solution

12. A force 100 N acts on a body of mass 2 kg for 10 s . The change in velocity of the body is
A. $100 m s^{-1}$
B. $250 \mathrm{~ms}^{-1}$
C. $500 m s^{-1}$
D. $1000 \mathrm{~ms}^{-1}$

Answer: C

D Watch Video Solution

13. A rock climber of weight 600 N climbs up a rock face of vertical height 300 m in 3600 s .

What is the average power he generates against gravity during this time ?
A. 0.020 w
B. 50 W
C. 1800 W
D. 7200 w

Answer: B

- Watch Video Solution

14. Pressure at a point inside a liquid does not depend on:
A. the depth of the point below the surface of the liquid
B. the nature of the liquid
C. the acceleration due to gravity at the point
D. the shape of the containing liquid

Answer: D

Watch Video Solution

15. A series of compressions and rarefactions of a sound wave is shown in figure. Given that the sound wave has a frequency of 1600 Hz and a sped of $320 \mathrm{~ms}^{-1}$

Calculate the distance between Pand Q
A. 0.3 m
B. 0.4 m
C. 0.6 m
D. 0.8 m

Answer: C

D Watch Video Solution

16. If a ball is thrown vertically upwards with speed u, the distance covered during the last t second of its ascent is
A. ut
B. $\frac{1}{2} g t^{2}$
C. $(u+g t) t$
D. $u t-\frac{1}{2} g t^{2}$

Answer: B

D Watch Video Solution

17. Figure shows the displacement of a particle going along the X -axis as a function of time.

The force acting on the particle is zero in the
region

A. $A B$
B. $B C$
C. $C D$
D. DE

Answer: A
18. A mass hangs on a string fixed at point P. It starts from position 1 and swings tot he farthest position on the opposite side, position 2. It then oscillates several times with decreasing amplitude before ending at position 3

Where does the ball have the maximum kinetic
energy?

A. At position 1
B. At position 2
C. The first time at position 3
D. The last time at position 3

Answer: C

- Watch Video Solution

19. If g is the acceleration due to gravity on the
surface of the earth, its value at a height equal to double the radius of the earth is
A. g
B. $g / 2$
C. $\mathrm{g} / 3$
D. $\mathrm{g} / 9$

Answer: D

- Watch Video Solution

20. The highest frequency produced by a man
is 1700 Hz and that of a woman is 2780 Hz .

The ratio of wavelengths of sound of man and woman are (speed of sound is $340 \mathrm{~ms}^{-1}$)
A. 1: 0.34
B. 1: 0.61
C. 1:0. 69

D. 1:0.59

Answer: B

- Watch Video Solution

Section B Numerical Value Type Questions

1. A body starts from rest at time $t=0$, the acceleration time graph is shown in the figure
. The maximum velocity attained by the body
will be
Acceleration

- Watch Video Solution

2. A cricket ball of mass 500 g is moving with speed of $36 k m h^{-1}$. It is reflected back with the same speed. The impulse (in $\mathrm{kg} \mathrm{ms}{ }^{-1}$) applied on it is
3. Two bodies with kinetic energies in the ratio

2:3 are moving with equal momentum. If $m_{1}=x m_{2}$, then the value of x is

- Watch Video Solution

4. A hollow spherical object weighs 25 g in air.

Its material density is $5 \mathrm{~g} / \mathrm{cm}^{3}$. If it weights 15
g in water, then the volume (in cm^{3}) of the hollow space in it will be

D Watch Video Solution

5. A boat at anchor is rocked by waves whose crests are 100 m apart and whose speed is
$25 \mathrm{~m} / \mathrm{s}$. These waves reach the boat once every :
6. A car moving on a straight road covers $1 / 3$
of the distance with $25 \mathrm{~km} / \mathrm{h}$ and rest with 75
km / h. The average speed (in $\mathrm{km} h^{-1}$) is

D Watch Video Solution

7. Sand drops from a stationary hopper at the rate of $5 \mathrm{~kg} / \mathrm{s}$ on to a conveyor belt moving with a constant speed of $2 m / s$. What is the force required to keep the belt moving and
what is the power delivered by the motor,

moving the belt?

D Watch Video Solution

8. The acceleration due to gravity on the surface of a pulsar of mass $M=1.98 \times 10^{30}$
kg and radius $\mathrm{R}=12 \mathrm{~km}$ rotating with time period $\mathrm{T}=0.041$ seconds is $x \times 10^{11} \mathrm{~ms}^{-2}$ where the value of x is

$$
\left(G=6.67 \times 10^{-11} M K S\right)
$$

D Watch Video Solution

9. A body can reduce the pressure in his lungs to 750 mm of mercury. Using a straw he can drink water from a glass upto the maximum depth of __-_._cm
(atmospheric pressure $=760 \mathrm{~mm}$ of mercury, density of mercury $=13.6 \mathrm{gcm}^{-3}$)

- View Text Solution

10. A motor pump lifts 6 tonnes of water from
a well of depth 25 m to the first floor of height

35 m from the ground floor in 20 minutes. The power of the pump (in kW) is [$g=10 m s^{-2}$]

- Watch Video Solution

