©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MTG IIT JEE FOUNDATION

FOOTSTEPS TOWARDS CBSE BOARD

Section A

1. At what place on the Earth's surface is the weight of the body maximum ?
2. A student pushes against a wall a force of

200 N. How much work does he do in 10 minutes?

- Watch Video Solution

3. Do action-reaction forces produce the same magnitude of acceleration?

- Watch Video Solution

4. A plastic ball and a clay ball of equal masses, travelling in the same direction with equal speeds, strike against a vertical wall. From which ball does the wall receive a greater amount of momentum?

- Watch Video Solution

5. A particle moves over three quarters of a circle of radius r. What is the magnitude of its

displacement?

- Watch Video Solution

6. State Kepler's 3rd law of planetary motion.

7. Newton's law of gravitation is also called

 inverse - square law. Why?
- Watch Video Solution

8. The kinetic energy of an object is K. If its
velocity is doubled, then its kinetic energy will
becomes nk. What is the value of n ?

- Watch Video Solution

9. What kind of energy transformation takes place in a mixie ad grinder?

- Watch Video Solution

10. Calculate the work done by a weight of 1 kg mass when it moves up through 1 m
11. What is the quantity which is measured by
the area occupied below the velocity-time graph.

D Watch Video Solution

12. What is the value of 1 kilowatt power in terms of horse power ?

D Watch Video Solution
13. Why is Newton's first law of motion also called law of inertia?

D Watch Video Solution
14. Under what conditions does an object moves with a uniform velocity?
15. A father has mass 60 kg and the mass of his
on is 30 kg . What is the ratio of inertia of the
father to the inertia of his son ?

D Watch Video Solution

16. Why is G called the universal gravitational constant?

D Watch Video Solution
17. Earth revolves around the Sun in a circular orbit with a uniform speed. Is this motion uniform or accelerated?

D Watch Video Solution

18. (a) What remains constant in uniform circular motion?
(b) What changes continuously in uniform circular motion?

- Watch Video Solution

19. What changes continuously in uniform circular motion ?

- Watch Video Solution

20. Assertion: A spring has potential energy,
both when it is compressed or stretched.
Reason: In compressing or stretching, work is done on the spring against the restoring force.
A. Both A and are true and R is correct

explanation of the assertion

B. Both A and R are true but R is not the correct explanation of the assertion
C. A is true, but R is false .
D. A is false, but R is true

Answer: A

- Watch Video Solution

21. Assertion : The speedometer of a car measures the instantaneous speed of the car

Reason : Average speed is equal to the total distance covered by an object divided by the total time taken
A. Both A and are true and R is correct explanation of the assertion
B. Both A and R are true but R is not the
correct explanation of the assertion
C. A is true, but R is false .

D. A is false, but R is true

Answer: B

D Watch Video Solution

22. Assertion : An object may have acceleration
even if it is moving with uniform velocity

Reason : An object may be moving with uniform velocity but it may be changing its direction of motion
A. Both A and are true and R is correct

explanation of the assertion

B. Both A and R are true but R is not the correct explanation of the assertion
C. A is true, but R is false .
D. A is false, but R is true

Answer: A

D View Text Solution

23. Assertion : When the orbital radius of a planet is made 4 times, its time period increases by 8 times

Reason: Greater the height above the Earth's
surface, greater is the time period of revolution
A. Both A and are true and R is correct
explanation of the assertion
B. Both A and R are true but R is not the
correct explanation of the assertion
C. A is true, but R is false .
D. A is false, but R is true

Answer: B

D Watch Video Solution

24. Two skaters A and B are moving in opposite directions such as they collide head - on and immediately become entangled. Skater A has a mass of 40 kg and is moving with a velocity 4 m / s eastwards while the other skater B has a
mass of 60 kg and is moving with a velocity 3 $\mathrm{m} /$ westwards. Assume that hte frictional force
acting between the skaters and the ground is negligible

The magnitude of total momentum of the two skaters before collision is
A. $40 \mathrm{kgms}^{-1}$
B. $20 \mathrm{kgms}^{-1}$
C. $10 \mathrm{kgms}^{-1}$

D. $60 \mathrm{kgms}^{-1}$

Answer: B

D Watch Video Solution

25. Two skaters A and B are moving in opposite
directions such as they collide head - on and immediately become entangled. Skater A has a mass of 40 kg and is moving with a velocity 4 m / s eastwards while the other skater B has a mass of 60 kg and is moving with a velocity 3
$\mathrm{m} /$ westwards. Assume that hte frictional force acting between the skaters and the ground is negligible

The total momentum of the two entangled skaters after collision will be
(v) is the velocity of the entangled skaters after collision)
A. $10 \mathrm{vkgms}^{-1}$
B. $100 \mathrm{vkgms}^{-1}$
C. $40 \mathrm{vkgms}^{-1}$
D. $20 v \mathrm{kgms}^{-1}$

Answer: B

D Watch Video Solution

26. Two skaters A and B are moving in opposite directions such as they collide head - on and immediately become entangled. Skater A has a mass of 40 kg and is moving with a velocity 4 m / s eastwards while the other skater B has a
mass of 60 kg and is moving with a velocity 3 $\mathrm{m} /$ westwards. Assume that hte frictional force
acting between the skaters and the ground is negligible

The velocity with which the two entangled skaters will move after collision is
A. $0.2 m s^{-1}$
B. $0.1 m s^{-1}$
C. $2 m s^{-1}$

D. $1 m s^{-1}$

Answer: A

D Watch Video Solution

27. Two skaters A and B are moving in opposite directions such as they collide head - on and immediately become entangled. Skater A has a mass of 40 kg and is moving with a velocity 4 m / s eastwards while the other skater B has a mass of 60 kg and is moving with a velocity 3
$\mathrm{m} /$ westwards. Assume that hte frictional force acting between the skaters and the ground is negligible

Which one of the following graphs depict linear momenta of bodies having equal velociyt proportional to their mass ?

Answer: C

- Watch Video Solution

28. Two skaters A and B are moving in opposite directions such as they collide head - on and immediately become entangled. Skater A has a mass of 40 kg and is moving with a velocity 4 m / s eastwards while the other skater B has a mass of 60 kg and is moving with a velocity 3 $\mathrm{m} /$ westwards. Assume that hte frictional force acting between the skaters and the ground is negligible

The percentage change is momentum of a body when both its mass and velocity are double, will be
A. 100%
B. 200%
C. 50%
D. 300%

Answer: D

D Watch Video Solution
29. The Earth is not a perfect sphere. Due to the flattening of Earth at the poles, the radius of Earth is minimum at the poles and hence the value of g is maximum at the poles. One the other hand, the radius of the Earth is maximum at the equator of the Earth. As the mass and radius of moon are smaller than
that of the Earth, so the value of g on moon is

1. $63 \mathrm{~m} / \mathrm{s}^{2}$. As we go up from the surface of
the Earth, the distance from the centre of the

Earth increases and hence the value of g decreases. The value of g decreases as we go
down inside the Earth and it become zero at the centre of the Earth .

What is the value of acceleration due to gravity on the surface of Earth ?
A. 10. $5 m^{2} s^{-1}$
B. $9.8 m s^{-2}$
C. 9. $8 m^{2} s^{-1}$
D. $2.5 m s^{-1}$

Answer: B

D Watch Video Solution

30. The Earth is not a perfect sphere. Due to
the flattening of Earth at the poles, the radius
of Earth is minimum at the poles and hence
the value of g is maximum at the poles. One the other hand, the radius of the Earth is maximum at the equator of the Earth. As the mass and radius of moon are smaller than that of the Earth, so the value of g on moon is
31. $63 \mathrm{~m} / \mathrm{s}^{2}$. As we go up from the surface of the Earth, the distance from the centre of the

Earth increases and hence the value of g decreases. The value of g decreases as we go down inside the Earth and it become zero at the centre of the Earth .

If a person with a spring balance and a body
hanging from it goes up and up in an aeroplane, then the reading of the weight of
the body as indicated by the spring balance will be
A. increases
B. decreases
C. remain same
D. first increases and then decreases

Answer: B

D Watch Video Solution
31. The Earth is not a perfect sphere. Due to
the flattening of Earth at the poles, the radius
of Earth is minimum at the poles and hence
the value of g is maximum at the poles. One the other hand, the radius of the Earth is maximum at the equator of the Earth. As the mass and radius of moon are smaller than that of the Earth, so the value of g on moon is

1. $63 \mathrm{~m} / \mathrm{s}^{2}$. As we go up from the surface of the Earth, the distance from the centre of the

Earth increases and hence the value of g decreases. The value of g decreases as we go down inside the Earth and it become zero at the centre of the Earth .

South pole

What will be the unit of $\frac{G}{g}$?
A. $m^{2} k g^{2}$
B. $m^{-1} k g^{2}$
C. $m^{2} k g^{-1}$

D. $m^{-2} k g$

Answer: C

D Watch Video Solution

32. The Earth is not a perfect sphere. Due to
the flattening of Earth at the poles, the radius
of Earth is minimum at the poles and hence
the value of g is maximum at the poles. One
the other hand, the radius of the Earth is maximum at the equator of the Earth. As the
mass and radius of moon are smaller than
that of the Earth, so the value of g on moon is
33. $63 \mathrm{~m} / \mathrm{s}^{2}$. As we go up from the surface of the Earth, the distance from the centre of the

Earth increases and hence the value of g decreases. The value of g decreases as we go down inside the Earth and it become zero at the centre of the Earth .

If the radius of the Earth were to shrink by
1% and its mass remaining the same, the acceleration due to gravity on the Earth's
surface would
A. decreases
B. increases
C. remain unchanged
D. will decrease by 9.8%

Answer: D

D Watch Video Solution

33. The Earth is not a perfect sphere. Due to
the flattening of Earth at the poles, the radius
of Earth is minimum at the poles and hence
the value of g is maximum at the poles. One
the other hand, the radius of the Earth is maximum at the equator of the Earth. As the mass and radius of moon are smaller than that of the Earth, so the value of g on moon is
34. $63 \mathrm{~m} / \mathrm{s}^{2}$. As we go up from the surface of the Earth, the distance from the centre of the

Earth increases and hence the value of g decreases. The value of g decreases as we go down inside the Earth and it become zero at the centre of the Earth .

The ratio of acceleration due to gravity ont he

Moon and that on the Earth is
A. $1: 2$
B. $1: 6$
C. $2: 1$
D. 6:1

Answer: B

D Watch Video Solution

34. Given figure shows the distance - time graph of three object A, B and C as time is taken on x - axis and distance is taken on y axis. The slope of the distance - time graph of an object represents its speed.

The magnitude of displacement equal to the distance travelled by the object, then we can use the term uniform velocity in place of uniform speed

Choose the correct statement
A. A is travelling the fastest
B. B is travelling the slowest
C. C is travelling the fastest
D. A is travelling the slowest

Answer: D

D View Text Solution

35. Given figure shows the distance - time graph of three object A, B and C as time is taken on x - axis and distance is taken on y axis. The slope of the distance - time graph of
an object represents its speed .

The magnitude of displacement equal to the distance travelled by the object, then we can use the term uniform velocity in place of

uniform speed

Which pair out of the three objects A, B and C travelled equal distance at any point ?
A. A and B
B. A and C
C. B and C
D. none of these

Answer: D

D View Text Solution

36. Given figure shows the distance - time graph of three object A, B and C as time is taken on x - axis and distance is taken on y -
axis. The slope of the distance - time graph of an object represents its speed.

The magnitude of displacement equal to the distance travelled by the object, then we can use the term uniform velocity in place of uniform speed

When B passes a distnace travelled by C is
A. 4 km
B. 7 km
C. 10 km
D. 5 km

Answer: B

D View Text Solution

37. Given figure shows the distance - time graph of three object A, B and C as time is taken on x - axis and distance is taken on y -
axis. The slope of the distance - time graph of an object represents its speed.

The magnitude of displacement equal to the distance travelled by the object, then we can use the term uniform velocity in place of uniform speed

Find the time when C meets A
A. 1.6 h
B. 1.5 h
C. 1.4 h
D. 1.2 h

Answer: B

D View Text Solution
38. Given figure shows the distance - time graph of three object A, B and C as time is taken on x - axis and distance is taken on y -
axis. The slope of the distance - time graph of an object represents its speed.

The magnitude of displacement equal to the distance travelled by the object, then we can use the term uniform velocity in place of uniform speed

Choose the correct distance - time graph for an object moving with uniform velocity
B.

C.

D.

Answer: B

- Watch Video Solution

39. When a body is moving uniformly along a straight line and there is no force of friction, acceleration/retardation of the body. According to Newton's second law of motion, the magnitude of force acting on a body is the product of mass and acceleration of the body The distance - time table of an object in motion is given below

Choose the correct order of the corresponding velocities of the object (in $\left.m s^{-1}\right)$ in different time intervals.
A. 16, 64, 76, 148, 244
B. $4,28,76,148,244$
C. $244,148,76,28,4$
D. $64,16,76,148,244$
40. When a body is moving uniformly along a straight line and there is no force of friction, acceleration/retardation of the body.

According to Newton's second law of motion, the magnitude of force acting on a body is the product of mass and acceleration of the body The distance - time table of an object in motion is given below

In the given table, acceleration of the object is
A. increasing
B. decreasing
C. constant
D. none of these

Answer: A

- View Text Solution

41. When a body is moving uniformly along a straight line and there is no force of friction, acceleration/retardation of the body.

According to Newton's second law of motion, the magnitude of force acting on a body is the product of mass and acceleration of the body The distance - time table of an object in motion is given below

The force acting on the object
A. increases
B. decreases
C. remains unchanged
D. none of these

Answer: A

D View Text Solution
42. When a body is moving uniformly along a straight line and there is no force of friction, acceleration/retardation of the body.

According to Newton's second law of motion, the magnitude of force acting on a body is the product of mass and acceleration of the body The distance - time table of an object in motion is given below

Which among the Newton's laws of motion can be used to calculate the force acting on the object in motion ?
A. First law

B. Second law

C. Third law
D. none of these

Answer: B

D Watch Video Solution

43. When a body is moving uniformly along a straight line and there is no force of friction, acceleration/retardation of the body.

According to Newton's second law of motion,
the magnitude of force acting on a body is the product of mass and acceleration of the body

The distance - time table of an object in motion is given below

A passenger in a moving train tosses a coin which falls behind him. This shows that the motion of train is
A. accelerated
B. uniform

C. retarded

D. along circular track

Answer: A

- Watch Video Solution

Section B

1. The data regarding the motion of two different objects A and B are given in the table

Time	Distance travelled by $\mathbf{A}(\mathbf{i} \mathbf{~} \mathbf{~ m})$	Distance travelled by $\boldsymbol{B}(\mathbf{i n} \mathbf{~})$
$9: 30 \mathrm{AM}$	10	10
$9: 35 \mathrm{AM}$	10	10
$9: 40 \mathrm{AM}$	15	19
$9: 45 \mathrm{AM}$	20	25
$9: 50 \mathrm{AM}$	25	25

Examine the given data carefully and state whether the motion of objects is uniform or non - uniform

D View Text Solution

2. A hammer of mass 500 g , moving at $50 \mathrm{~m} / \mathrm{s}$,
strikes a nail. The nail stops the hammer in a
very short time of 0.01 s . What is the force of the nail on the hammer?

D Watch Video Solution

3. How will the equations of motion for an object moving with a uniform velocity change ?

- Watch Video Solution

4. The velocity (u)-time (t) graph of an object moving along a straight line is as shown is Fig.

2 (b). 30. Calculate the distance covered by
object between

$$
\begin{equation*}
(i) t=0 \rightarrow t=5 s \tag{ii}
\end{equation*}
$$

$t=0 \rightarrow t=10 s$.

5. The velocity (u)-time (t) graph of an object moving along a straight line is as shown is Fig.

2 (b). 30. Calculate the distance covered by
object between

$$
\begin{equation*}
(i) t=0 \rightarrow t=5 s \tag{ii}
\end{equation*}
$$

$t=0 \rightarrow t=10 s$.

6. If a fly collides with the windshield of a fast moving bus, which one will experiences an impact force with a larger magnitude ?

D Watch Video Solution

7. (a) State and explain the law of conservation of energy with an example ?
(b) Explain how, the total energy a swinging pendulum at any instant of time remains
conserved. Illustrate your answer with the help of a labelled diagram.

D Watch Video Solution
8. Write the transformation of energy in the given cases

Winds moving

D View Text Solution
9. Write the transformation of energy in the
given cases

An athlete running

D Watch Video Solution

10. Write the transformation of energy in the given cases

A coconut falling
11. Write the transformation of energy in the given cases
playing of guitar

D Watch Video Solution

12. What should be the power of an engine required to lift 90 metric tonnes of coal per
hour from a mine whose depth is 200 m ?
13. The acceleration of a freely falling body does not depend on the mass of the body. Show this by deriving an expression for the same

D Watch Video Solution

2. Give statement of Newton's second law of motion. Deduce a mathematical formulation for it .
3. An object of mass 200 kg is accelerated uniformly from a velocity of $4 m s^{-1} t o 8 m s^{-1}$ in 10 s . Find the magnitude of the force exerted on the object

- Watch Video Solution

4. Define force. Given its unit

5. What are different types of forces?

D Watch Video Solution

6. What is uniform circular motion ? Show that
it is an accelerated motion inspite of being uniform.
7. An athlete runs on a circular track, whose radius is 50 m with a constant speed. It takes

50 seconds to reach point B from starting point A. Find

the distance covered

- Watch Video Solution

8. An athlete runs on a circular track, whose radius is 50 m with a constant speed. It takes

50 seconds to reach point B from starting point A. Find
the displacement

Watch Video Solution

9. An athlete runs on a circular track, whose radius is 50 m with a constant speed. It takes

50 seconds to reach point B from starting point A. Find

the speed
10. According to the third law of motion when we push an object the object pushes back on
us with an equal and opposite force. If the
object is a massive truck parked along the roadside, it will probable not move. A student
justifies this by answering that the two opposite and equal forces cancel each other.

Comment on this logic and explain why the truck does not move
11. The line that joins the saturn to the sun sweeps area A_{1}, A_{2} and A_{3} in time intervals of 6 weeks, 3 weeks and 2 weeks respectively as shows in the Fig. What is the correct relation between A_{1}, A_{2} and A_{3} ?

D Watch Video Solution

12. The time period of a planet of a star is 8 hours. What will be the time period if the separation between the planet and the star is increased to 9 times the previous value?

- Watch Video Solution

13. Define potential energy. Derive an expression for the potential energy of a body of mass m, at a height h above the surface of the Earth.
14. In the following situations identify the agent exerting the force and the object on which it acts. State the effect of the force in each case.

Squeezing a piece of lemon between the fingers to extract its juice.

- Watch Video Solution

15. In the following situations identify the agent exerting the force and the object on
which it acts. State the effect of force in each

case

Taking out paste from a toothpaste tube.

D Watch Video Solution

16. In the following situations identify the agent exerting the force and the object on which it acts. State the effect of the force in each case

A load suspended from spring while its other end is on a hook fixed to a wall

Section D

1. A body A of mass 3.0 kg and a body B of mass 10 kg are dropped simultaneously from a height of 14.9 m Calculate
their momenta
2. A body A of mass 3.0 kg and a body B of mass 10 kg are dropped simultaneously from a height of 14.9 m Calculate
their potential energies, and

D View Text Solution

3. A body A of mass 3.0 kg and a body B of
mass 10 kg are dropped simultaneously from a height of 14.9 m Calculate
their kinetic energies when they are 10 m above the ground

D Watch Video Solution

4. Figure gives the acceleration of a 2.0 kg body as it moves from rest along x - axis while
a variable force acts on it from $x=0 m$ to $x=9$
m. Find the work done by the force of the body when it reaches
$x=4 \mathrm{~m}$ and

- Watch Video Solution

5. Figure gives the acceleration of a 2.0 kg body as it moves from rest along x - axis while a variable force acts on it from $\mathrm{x}=0 \mathrm{~m}$ to $\mathrm{x}=9$ m. Find the work done by the force of the body when it reaches
$x=7 m$

- Watch Video Solution

6. An object has a uniformly acclerated motion.

The object always slows down before the time,
when its velcity becomes zero. Establish this
statement graphiclly when (i) both initial
veocity (u) and acceleration (a) are positive(iii)
(u) is positive and (a) is begative and (iv) both
(u) and (a) are negativ e.

- Watch Video Solution

7. An object has uniformly accelerated motion .

The object always slows down before the time,
when its velocity becomes zero. Prove this
statement graphically, when
u is negative and a is positive

- Watch Video Solution

8. An object has uniformly accelerated motion .

The object always slows down before the time, when its velocity becomes zero. Prove this statement graphically, when
u is positive and a negative and

- Watch Video Solution

9. An object has a uniformly acclerated motion.

The object always slows down before the time, when its velcity becomes zero. Establish this
statement graphiclly when (i) both initial
veocity (u) and acceleration (a) are positive(iii)
(u) is positive and (a) is begative and (iv) both
(u) and (a) are negativ e.

D Watch Video Solution

10. In the figure shown, a light one rupee coin
is placed on the card and the card is flicked
with a push
What do you observe in this case and explain
your observation?

(D) Watch Video Solution
11. In the figure shown, a light one rupee coin
is placed on the card and the card is flicked
with a push

State the law involved in this case

- View Text Solution

12. In the figure shown, a light one rupee coin is placed on the card and the card is flicked with a push

What will be your observation if the given coin is replaced by a heavy five rupee coin . Justify
your answer

13. "First law of motion can be mathematically
stated from the mathematical formulation of
second law of motion ." Justify this statement

D Watch Video Solution

14. How much momentum will a dumb-bell of mass 10 kg transfer to the floor if it falls a height of 80 cm ? Take its downward acceleration to be $10 \mathrm{~m} / \mathrm{s}^{2}$.
\square
