びdoubtnut

PHYSICS

BOOKS - KUMAR PRAKASHAN KENDRA

PHYSICS (GUJRATI ENGLISH)

GRAVITATION

Intext Questions And Answers

1. State the universal law of gravitation.
2. Write the formula to find the magnitude of the gravitational force between the earth and an object on the surface of the earth.
(Watch Video Solution
3. What do you mean by free fall ?
(Watch Video Solution
4. What do you mean by acceleration due to gravity?
(Watch Video Solution
5. What are the difference between the mass of an object and its weight?
6. Why is the weight of an object on the moon

1
$\frac{1}{6} t h$ of its weight on the earth?
(Watch Video Solution
7. Why is it difficult to hold a school bag having
a strap made of a thin and strong string?

- Watch Video Solution

8. What do you mean by buoyancy?

D View Text Solution

9. Why does an object float or sink when placed on the single of water ?

D View Text Solution

10. You find your mass to be 42 kg on a weighing machine. Is your mass more or less than 42 kg ?
11. You have a bag of cotton and an iron bar, each indicating a mass of 100 kg when measured on a weighing machine. In reality, one is heavier than the other. Can you say which one is heavier and why?

D View Text Solution

Questions And Answers

1. What is centripetal force?
2. What is the SI unit of G, the universal gravitational constant ?

- Watch Video Solution

3. What is the value of G ?

- Watch Video Solution

4. Who determined the value of G ?

- Watch Video Solution

5. Write the mathematical expression for the calculation of the magnitude of gravitational force between the earth and an object of mass m on the surface of the earth.

- Watch Video Solution

6. A stone describing a circular path has constant speed or constant velocity?

7. Which force is required to keep a body in

 uniform circular motion?- Watch Video Solution

8. Which forces generate tides in ocean ?

- Watch Video Solution

9. The value of G on the surface of the earth is
$6.673 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$. What is its value on
the moon?

D Watch Video Solution

10. Which of the following will be greater ?

Foree of attraction of the earth on a body of mass 1 kg or force of attraction of a body of mass 1 kg on the earth.
11. Due to which force does the moon revolve around the earth on circular path?

- Watch Video Solution

12. The earth and the moon are attracted to
each other by gravitational force. Does the earth attract the moon with a force that is greater or smaller or the same as the force with which the moon attracts the earth ? Why?
13. What happens to the force between two objects, if
(i) the mass of one object is doubled ?
(ii) the distance between the two objects is doubled?
(iii) the distance between the two objects is tripled?
(iv) the masses of both the objects are doubled?
14. State two factors on which the gravitational
force between two objects depends.

- Watch Video Solution

15. The gravitation force between two objects
is F . How will the force change when the distance between them is reduced to $\frac{1}{4} t h$?
16. When a body is thrown vertically upward, at maximum height what will be its final velocity ?

- Watch Video Solution

17. Which type of motion is described by a freely falling body?
18. What is the value of g on the surface of the earth ?

- Watch Video Solution

19. What will be the mass of a body on the moon, if its mass on the earth is 60 kg ? (the value of g on the moon is th the value Hof g on the earth.)
20. What is the weight of the body on the moon, whose weight on the earth is 120 N ?

- Watch Video Solution

21. What do we call the gravitational force between the earth and an object ?

- Watch Video Solution

22. Define : Thrust
23. Define : Pressure

- Watch Video Solution

24. How can the pressure be doubled ?

Watch Video Solution
25. What is the SI unit of pressure?
26. In what direction does the buoyant force on an object immersed in a liquid act ?

- Watch Video Solution

27. Why does a block of plastic released under water come up to the surface of water ?

- Watch Video Solution

28. What is the pressure acting on a surface of area $0.02 \mathrm{~m}^{2}$. due to a thrust of 25 N ?

D Watch Video Solution

29. Which instrument is used to determine the density of milk?

Watch Video Solution
30. What is the use of hydrometer?

- Watch Video Solution

31. What is relative density ?

- Watch Video Solution

32. Unit of relative density is

- Watch Video Solution

Choose The Correct Option

1. If an object is falling freely from certain height towards the surface of earth, its total mechanical enrgy
A. will move upwards with accelerated motion.
B. will move downwards with accelerated motion.
C. will move downwards with constant
velocity.
D. will move upwards with constant velocity.

Answer: A::C::D

D Watch Video Solution

2. The mass of an object.
A. varies at different locations.
B. remains constant at any location.
C. can be measured using a spring balance.
D. is in the direction of gravitational force.

3. The density of water is.........

A. $1 \mathrm{kgm}^{-3}$
B. $1000 \mathrm{kgm}^{-3}$
C. $1000 \mathrm{gcm}^{-3}$
D. $19300 \mathrm{kgm}^{-3}$

Answer: A::C

- Watch Video Solution

4. If the relative density of an object is more than that of water, then that object will.....
A. sink in water
B. float on water
C. dissolve in water
D. not get wet in water.

Answer: A

- Watch Video Solution

5. The relative density.... (has unit of $\mathrm{kg} \mathrm{m}-3$, has unit of $\mathrm{g} \mathrm{cm}-3$, has unit of $\mathrm{kg} \mathrm{m}-2$, is unitless.)
A. has unit of $\mathrm{kg} \mathrm{m}^{-3}$
B. has unit of $\mathrm{g} \mathrm{cm}^{-3}$
C. has unit of $\mathrm{kg} \mathrm{m}^{-2}$
D. is unitless.

Answer:
6. The increase in velocity of a freely falling body in one second is
A. $9.8 m s^{-2}$
B. $9.8 m s^{-1}$
C. $-9.8 m s^{-2}$
D. $-9.8 m s^{-1}$

Answer: A

7. The mass of an object of 6 kg , on the surface

 of moon isA. 1 kg

B. 36 kg
C. 6 kg

$$
\text { D. } \frac{1}{6} k g
$$

Answer:
8. Practically the value of G for the first time was measured by
A. Newton

B. Cavendish

C. Archimedes

D. Galileo

Answer: B
(Watch Video Solution

9. What is the value of G ?

$$
\begin{aligned}
& \text { A. } 6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-1} \\
& \text { B. } 6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} \\
& \text { C. } 6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} \\
& \text { D. } 6.67 \times 10^{-11} \mathrm{Nm} k g_{-2}
\end{aligned}
$$

Answer: A::B

- Watch Video Solution

10. The relation between G and g is......

$$
\begin{aligned}
& \text { A. } g=\frac{G M_{e}^{2}}{R_{e}^{2}} \\
& \text { B. } g=\frac{G M_{e}}{R_{e}^{2}} \\
& \text { C. } g=\frac{G M_{e}}{R_{e}} \\
& \text { D. } g=\frac{G M_{e}^{2}}{R_{e}}
\end{aligned}
$$

Answer: B
11. If the mass and radius of a planet are twice
the mass and radius of the earth respectively, what would be the value of gravitational acceleration the surface of that planet?
A. $9.8 m s^{-2}$
B. $19.6 m s^{-2}$
C. $4.9 m s^{-2}$
D. $2.45 m s^{-2}$

Answer: C
12. A stone falling freely on the terrace of the building takes 4 s to reach the ground. What would be the height of his building?
A. 9.8 m
B. $(2 \times 9.8) m$
C. $(4 \times 9.8) m$
D. $(8 \times 9.8) m$

Answer: D
13. If a ball is thrown in upward direction it attains maximum height of 7.2 m . What would be the initial velocity of this ball?
$\left(\right.$ Take $\left.\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$
A. $7.2 m s^{-1}$
B. $14.4 m s^{-1}$
C. $12 m s^{-1}$
D. $144 m s^{-1}$

Answer: C

D Watch Video Solution

14. An object having mass 1 kg is falling freely.

Its velocity is $29.4 m s^{-1}$ after time $\mathrm{t}=3 \mathrm{~s}$, then
what would be its velocity after $t=4 s$?
A. $29.4 m s^{-1}$
B. $9.8 m s^{-1}$
C. $39.2 m s^{-1}$
D. $19.6 m s^{-1}$

Answer: C

D Watch Video Solution

15. If a piece of stone is brought to earth from the surface of moon, then ...
A. mass of the stone would change.
B. weight of the stone would change.
C. mass and weight, both of the stone would change.

D. mass and weight, both of the stone

 remain constant.
Answer: B

D Watch Video Solution

16. If the distance between two objects is halved, what change would occur in force acting between them?
A. Would be double

B. Would be one-fourth

C. Would be half
D. Would be four times

Answer: D

D Watch Video Solution

17. At which of the following places locations the magnitude of g is the most?
A. At the top of the Mount Everest

B. At the equation

C. All the Antarctica

D. In deep well

Answer: C

D Watch Video Solution

18. What would be the weight an object on the moon, whose weight on earth is 36 N ?
A. 5 N
B. 6 N
C. 30 N
D. 180 N

Answer: B

- Watch Video Solution

19. If pressure is to be doubled keeping the force acting an the surface constant, what would be the area of the surface required?
A. Double

B. Half

C. Four times

D. Change should not be done in the area

of the surface

Answer: B
20. Two objects of different masses fall freely
from certain height towards the surface of the moon, then ...
A. their velocity would be the same any time.
B. their acceleration would be different.
C. magnitude of the force acting on them
would be the same.
D. their inertia would change.

Answer: A

D Watch Video Solution

21. The magnitude of gravitational acceleration of the earth
A. would be equal at the equator and poles.
B. would be minimum at poles.
C. would be minimum at equator.

D. increases on going from poles to the

equator.

Answer: C

D Watch Video Solution

22. The distance between two objects is doubled. The gravitational force acting between them would be........... (Initial gravitaional force is F)

$$
\text { A. } \frac{F}{4}
$$

B. $\frac{F}{2}$
C. F
D. 2 F

Answer: A

D Watch Video Solution

23. A boy moves a stone tied to a string on horizontal circular path. If the string breaks,
then the stone
A. would continue to move on the original circular path.
B. would move on a linear path towards the centre of the circle
C. would start moving on a linear path in
the direction of tangent drawn at the point of a circle.
D. would start moving away from the centre
in radial direction at the point of a circle.

- Watch Video Solution

24. An object is placed in three liquids having different densities d_{1}, d_{2} and d_{3} one after the other. As a result $\frac{1}{9}$ part. $\frac{2}{11}$ part and $\frac{3}{7}$ part of the size of this okicet remain outside the surface of the liquid respectively. Select the correct relationship from the following

$$
\text { A. } d_{1}>d_{2}>d_{3}
$$

$$
\text { B. } d_{1}>d_{2}<d_{3}
$$

$$
\text { C. } d_{1}<d_{2}>d_{3}
$$

D. $d_{1}<d_{2}<d_{3}$

Answer: D

D Watch Video Solution

25. In the formula $F=\frac{G M m}{d^{2}} \ldots \ldots .$.
A. the magnitude of G is dependent on the
value of g at that place.
B. G is used only when one of the two
objects is the earth.
C. the magnitude of G is maximum at the poles of the earth.

D. G is a universal gravitational constant.

Answer: A::C

D Watch Video Solution

26. Universal law of gravitation is used only when the gravitational force ...
A. exists between the earth and a particle.
B. exists between the earth and the sun.
C. exists between any two objects.
D. exists between to electrical charged objects.

Answer: A::B::C

D Watch Video Solution

27. The magnitude of 'G' as per universal law of gravitation ...
A. is dependent on the mass of the earth.
B. is dependent on the radius of the earth.
C. is dependent on both the mass and radius of the earth.
D. is independent to the mass and radius of the earth.

Answer: A::D
28. The atmosphere of the earth is attached with the earth due to
A. gravitational force
B. wind
C. cloud
D. magnetic field of the earth

Answer: A:C
29. The force existing between two particles having mass 1 unit and at a distance of 1 unit from each other is called
A. gravitational potential
B. gravitational acceleration
C. intensity of gravitational field
D. universal constant of gravitation

Answer: D
30. The weight of a given object on the centre of the earth of radius R_{e} is
A. zero

B. infinite

C. R_{e}, times to that on the surface of the
earth
D. $\frac{1}{R_{e}^{2}}$ times to that on the surface of the earth
31. Weight of an object in air is 10 N , when it is
fully immersed in water its weight is 8 N . The weight of liquid displaced by the object would be N .
A. 2
B. 8
C. 10
D. 12

- Watch Video Solution

32. A girl is standing on a box having length 60
cm . breadth 40 cm and height 20 cm . In which of the following case the pressure acting by the girl on the box would be maximum ?
A. If the base of the box is made of the
length and breadth.
B. If the base of the box is made of the breadth and height.
C. If the base of the box is made of length and height.
D. In all given three cases.

Answer: B

D Watch Video Solution

33. An apple detached from the tree falls on the earth. The force acting on the apple by the earth is F_{1} and that acting on the earth by the apple is F_{2}, then
A. $F_{1} \gg F_{2}$
B. $F_{2} \gg F_{1}$
C. $F_{1}>F_{2}$
D. $F_{1}=F_{2}$

Answer: D

D Watch Video Solution

Fill In The Blanks

1.is the mathematical form of universal law of gravitation.

D Watch Video Solution

2. An object of mass 2 kg falls freely. At the end of $t=4 s$ its velocity would be $m s^{-1} \ldots \ldots$.
3. A ball is thrown upward and attains the maximum height 10 m . The initial velocity of this ball would be $m s^{-1}$

D Watch Video Solution

4. A stone of mass 100 g is thrown upward with
velocity $49 \mathrm{~ms}^{-1}$. This stone will fall on the earth after............s

- Watch Video Solution

5. The magnitude of gravitational acceleration on the moon is............. $m s^{-1}$.

D Watch Video Solution

6. The weight of an object on the earth is 60 N ,
then its weight on the moon would be ..N.
7. A ball is thrown upward and attains the maximum height 10 m . The initial velocity of this ball would bems ${ }^{-1}$

- Watch Video Solution

8. The mass of an object on the earth is 10 kg .
then its mass on the moon would be................kg.
9. The mass of an object is 30 kg , then Its
weight on the moon would beN.

D Watch Video Solution
10. The weight of an object on the earth is 98

N , then its mass would be kg
11. A force 100 N is applied perpendicularly on a surface of $2 m^{2}$, then the pressure exerted on it would be.....$N m^{-2}$.

D Watch Video Solution

12. The mass and volume of a solid steel cuboid
is 156 g and $20 \mathrm{~cm}^{3}$ respectively, then its density would begcm ${ }^{3}$.

- Watch Video Solution

13. The earth is about its own (imaginary)

axis in space. (revolving, rotating, moving with
constant velocity)

D Watch Video Solution

14. The earth and other planetsaround
the sun. (revolve, rotate, move with constant velocity)

- Watch Video Solution

15. An object moving in the opposite direction
(upward direction) of the gravitional force of
the earth performs (accelerated motion, motion mich constant velocity: retarded motion)

- Watch Video Solution

16. Weight of a body is............ on the equator than its weight on the poles. (slightly more slightly less, 9.8 times)
17. The direction of weight of an object is in
(upward direction, in the direction of gravitional force, in north direction)

- Watch Video Solution

18.

$$
=1 \ldots \ldots \ldots m s^{2}, N m^{-2} k g^{-2}, N m^{-2}, N m^{2} k g^{-2}
$$

19. The initial velocity of a freely falling object (more, $9.8 \mathrm{~ms}^{-1}$. Zero) is

- Watch Video Solution

20. The distance between two objects is doubled. The gravitational force acting between them would be........... (Initial gravitaional force is F)
21. What do we call the gravitational force between the earth and an object?

D Watch Video Solution

22. The buoyant force acting on a object floating on the surface of the liquid isthe weight of the objects. (less than, more than equal to)

D Watch Video Solution

23. If the mass of object is 42 kg on earth then what is the weight of object on moon?

- Watch Video Solution

24. The mass of an object whose weight on the earth is 490 N iskg. $(40,50,490)$
25. A ball falling freely from the terrace of a building takes 3 s to reach the ground, then the height of this tower is.........m. (29.4, 44.1, 39.2)

D Watch Video Solution

26.principle/law is used in designing ships and submarines. (Archimedes', Newton's first, Pascals)

D Watch Video Solution

27. is used to determine the purily of a sample of milk. (Hydrometer, Lactometer, Odometer)

D Watch Video Solution

True False

1. The acceleration of a free falling object does not depend on its mass.
2. The value of gravitational acceleration g for the first time was measured by
A. Cavendish.

B. Einstein

C. Thomson
D. Newton

Answer:

3. The distance between two objects is doubled. The gravitational force acting between them would be........... (Initial gravitaional force is F)

- Watch Video Solution

4. The gravitational constant G has unit.

- Watch Video Solution

5. Mass is a vector quantity.
6. The unit of weight is newton.

- Watch Video Solution

7. The moon moves around the earth. This is called rotation.
8. The weight of an object increase on going from equator to poles.

- Watch Video Solution

9. The mass of an object is measured by a simple physical balance.

- Watch Video Solution

10. The mass of an object.

- Watch Video Solution

11. The unit of mass of an object is kilogram
(kg)

- Watch Video Solution

12. A solid piece of iron floats on mercury filled
in a vessel.
13. The weight of an object is more at equator as compared to that at polar region. True/ False?

D Watch Video Solution

14. The gravitational acceleration g is neither universal nor constant.
15. The resistance of each side of an equilateral triangle is 3 ohm. Calculate the equivalent resistance between ends of a side.

- Watch Video Solution

16. Weight is a vector quantity.
17. The mass of an object at the polar region is
the maximum.

- Watch Video Solution

18. Two objects of different masses fall freely
from certain height towards the surface of the moon, then ...

19. Pascal is a unit of thrust?

D Watch Video Solution

20. Relative density of an object

Density of water
$=\frac{\text { Density of object }}{\text { Dens }}$
(D) Watch Video Solution
21. The buoyant force acting on a body partly immersed in liquid, depend on the total
volume of the object.

(Watch Video Solution

Short Questions

1. State two factors on which the gravitational force between two objects depends.

- Watch Video Solution

2. If a planet existed, whose mass and radius
were both half of that of the earth, what would be the acceleration due to gravity at the surface of the planet in terms of that on the surface of the earth ?

D Watch Video Solution

3. How does the force of gravitation between
two objects change when the distance
between them is reduced to half?
4. Calculate the force of gravitation between
the earth and the sun, given that the mass of
the erath $=6 \times 10^{24} \mathrm{~kg}$ and of the Sun
$=2 \times 10^{30} \mathrm{~kg}$. The average distance between the two is $1.5 \times 10^{11} \mathrm{~m}$.

- Watch Video Solution

5. What is the importance of universal law of gravitation?

- Watch Video Solution

6. What is the acceleration of free fall ?

D Watch Video Solution

7. Gavitational force acts on all objects in proportion to their masses. Why then, a heavy objects does not fall faster than a light object ?
8. What is the magnitude of the gravitational
force between the earth and a 1 kg object on its surface?
(Mass of the earth is $6 \times 10^{24} \mathrm{~kg}$ and radius of the earth is $6.4 \times 10^{6} \mathrm{~m}$)

- Watch Video Solution

9. How will the weight of a body of mass 100 kg change, if it is taken from the equator to the poles?
10. Amit buys some gram of gold on North pole as his friend told him. He sold this gold to his
friend on equator .Will his friend be happy with the weight of gold that he bought? Why .
(Hint : The magnitude of g on the poles is more than that at equator).
11. Gravitational force on the surface of the moon is only $\frac{1}{6}$ times as strong as gravitational force on the earth. What is the weight in newton of a 10 kg object on the moon and on the earth?

- Watch Video Solution

12. A ball is thrown vertically upwards with a velocity of 49 ms -- Calculate fi) the maximum
height to which it rises, (ii) the total time it takes to return to the surface of the earth.

- Watch Video Solution

13. A stone is released from the top of a tower of height 19.6m. Calculate its final velocity just before touching the ground.

- Watch Video Solution

14. A stone is thrown vertically upward with an initial velocity of $40 \mathrm{~ms}^{-1}$. Taking
$g=10 \mathrm{~ms}^{-2}$. find the maximum height
reached by the stone. What is the net displacement and the total distance covered by the stone?

D Watch Video Solution

15. Why does a sheet of paper fall slower than one that is crumpled into a ball ?

-
 Watch Video Solution

16. If the moon attract the earth why does the earth not move towards the moon?

- Watch Video Solution

17. Define : Thrust

D Watch Video Solution

18. What is pressure? State its unit. Is pressure
a scalar or a vector quantity?

- Watch Video Solution

19. A force of 100 N acts on a surface area 25
cm^{2}. Calculate the pressure. Calculate the changed pressure, if the force is now reduced to 25 N .

- Watch Video Solution

20. What is the difference between the pressure exerted by a solid and a fluid ?
21. Where do you observe Archimedes principle in daily life ? Give two examples. $\left(A S_{7}\right)$

- Watch Video Solution

22. Explain relative density.
23. The volume of 50 g of a substance is $20 \mathrm{~cm}^{3}$.

If the density of water is $1 \mathrm{gcm}^{-3}$, will the substances float or sink?

- Watch Video Solution

24. The volume of a 500 g sealed packet is 350 cm^{3} Will the packet float or sink in water if the density of water is $1 \mathrm{gcm}^{3}$? What will be the mass of the water displaced by this packet?
25. The dimensions of wooden black are
$2 m \times 0.125 m \times 0.10 m$. If the relative density of wood is 0.6 , calculate the mass of wooden block Density of water is $10^{3} \mathrm{kgm}^{-3}$.

D Watch Video Solution

26. if a particle performs SHM then its given by
$y=20 \sin (20 t-6 x)$. what is the value of frequency?
27. if a particle performs SHM then its given by
$y=150 \sin (40 t-12 x)$. what is the value of

Amplitude?

D Watch Video Solution

28. if a particle performs SHM then its given by
$y=30 \sin \left(60 \pi t-\frac{4}{\pi} x\right)$. what is the value of
Amplitude frequency and wavelength?

- Watch Video Solution

29. The tyres of heavy vehicles are kept broad.

D Watch Video Solution

30. It is difficult to insert a blunt nail in wooden block.

- Watch Video Solution

31. if the wire's length is increases by 10% and find the change in resistance?
32. It is easier to cut vegetables with a sharp knife than with a blunt knife.

- Watch Video Solution

33. A bucket full of water appears heavier when

is brought outside water.

- Watch Video Solution

34. A piece of iron (Fe) floats in a vessel filled with mercury (Hg) but a piece of gold (Au) of the same mass sinks in it.

- Watch Video Solution

35. A Voltage (ship) made from steel float in sea water but a small pin a steel sinks in sea water.
36. It is easier to walk on soft sand with flat shoe than a pencil heeled shoe.

- Watch Video Solution

37. The camel is heavier than man, yet a camel walks easily on sand in desert while it is difficult for a man to walk on the sand.

D Watch Video Solution

Match The Following Properly

Columan 1	Colamn 41
1. SI unit of mass	a. N
2. St unit of weight	b. $\mathrm{N} \mathrm{m}^{-2}$
3. SI unit of density	c. kg^{-3}
4. SI unit of pressure	d. $\mathrm{kg} \mathrm{m}^{-3}$

- Watch Video Solution

2. Match the following

Columan I	Column II
1. St untt of G^{\prime}	a. N
2. SI unit of ' g '	b. $\mathrm{N} \mathrm{m}^{2} \mathrm{~kg}^{-2}$
3. Unit of relative density	c. $\mathrm{m} \mathrm{s}^{-2}$
4. Unft of buoyant force	d. Untless
(No untt)	

3. Universal constant of gravition G and Gravitational acceleration g.

- Watch Video Solution

4. Using Newton's universal law of gravitation
and second law of motion, find the mathematical expression for acceleration due to gravity on the surface of any planet.
5. Mona weighs 423 N on the earth and 1000 N on the planet Jupiter. What is the gravitational acceleration on the Jupiter? (The value of g on the earth is $10 m s^{-2}$).

D Watch Video Solution

6. A stone is allowed to fall from the top of a tower 100m high and at the same time another
stone is projected vertically upwards from the
ground with a velocity of $25 m s^{-1}$. Calculate when and where the two stones will meet.

- Watch Video Solution

7. A ball thrown up vertically returns to the
thrower after 6s. Find
(a) the velocity with which it was thrown up.
(b) the maximum height it reaches and
(c) its position after 4 s .
8. Differentiate between density and relative density. What is the density of silver given that its relative density is 10.3 ?

- Watch Video Solution

9. A block of wood of mass 6 kg and dimensions
$50 \mathrm{~cm} \times 30 \mathrm{~cm} \times 10 \mathrm{~cm}$ is placed on a table top. Find the pressure exerted, if the block lies on the table top with sides of dimensions, (a)
$50 \mathrm{~cm} \times 30 \mathrm{~cm}$ (b) $30 \mathrm{~cm} \times 10 \mathrm{~cm}$.
10. State Kepler's laws of planetary motion.

D Watch Video Solution

11. While passing by a pond, some students
saw a drowning man sereaming for help. They
alerted another passer by, who immediately
threw an inflated rubber tube in the pond. The man was saved.
(i) Why did the passer-by use inflated rubber

Lube to save the drowning man?
(ii) Write the principle involved here.
(iii) The density of turpentine is $840 \mathrm{~kg} \mathrm{~m}^{-3}$. What will be its relative density ? (Density of water is $1000 \mathrm{~kg} \mathrm{~m}^{-3}$).

D Watch Video Solution

Textual Examples Numericals

1. The mas of the earth is $6 \times 10^{24} \mathrm{~kg}$ and that of the moon is $7.4 \times 10^{24} \mathrm{~kg}$. If the distance
between the centres of the earth and the moon is $3.84 \times 10^{5} \mathrm{~km}$, calculate the force exerted by the earth of the moon. $G=6.7 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$.

D Watch Video Solution

2. A car falls off a ledge and drops to the ground is 0.5 s Let $g=10 \mathrm{~ms}^{-2}$ (for simplifying
the calculations).
(i) What is its speed on striking the ground?
(ii) What is its average during the 0.5 s ?
(iii) How high is the ledge from the ground?

- Watch Video Solution

3. An object is thrown verticallly upward and rises to a height of 10 m . Calculate (i) the velocity with which the object was thrown upwards and (ii) the time taken by the object to reach the highest point.
4. Mass of an object is 10 kg . What is its weight on the earth?

D Watch Video Solution

5. An object weighs 10 N when measured on the
surface of the earth. What would be its weight when measured on the surface of the moon?

- Watch Video Solution

6. A block of wood is kept on a table top. The mass of wooden block is 5 kg and its dimensions are $40 \mathrm{~cm} \times 20 \mathrm{~cm} \times 10 \mathrm{~cm}$. Find the pressure exerted by the wooden block on
the table top if it is made to lie on the table top with its sides of dimensions
$20 \mathrm{~cm} \times 10 \mathrm{~cm}$ and (b) $40 \mathrm{~cm} \times 20 \mathrm{~cm}$.

- Watch Video Solution

7. Relative density of silver is 10.8 . The density of water is $10^{3} \mathrm{kgm}^{-3}$. What is the density of

silver in SI unit?

- Watch Video Solution

Additional Numerical For Practice

1. An apple of mass 150 g falls on the surface of
the earth from a negligible height (in comparison with the radius of the carth) due to gravitation. Calculate the gravitational force acting between the apple and the earth. Also calculate the acceleration produced in both of
them due to the gravitational force.
(Mass of the earth $=6 \times 10^{24} \mathrm{~kg} \quad$ and
Distance between the centre of the earth and the apple $\left.=6.38 \times 10^{6} \mathrm{~m}\right)$.

D Watch Video Solution

2. Taking the mass of the moon to be
$7.3 \times 10^{22} \mathrm{~kg}$ and the radius to be 1740 km
calculate the acceleration due to gravity ' g_{m} '
on the surface of the moon. Compare it with
the acceleration due to gravity ' g_{e} ' on the earth.

- Watch Video Solution

3. A ball, when released from the top of a multistoried building reaches the bottom in 2 s .

Find the height of the building. Calculate the velocity of the ball when it reaches the earth. $\left(g=9.8 m s^{-2}\right)$
4. A ball thrown vertically upwards reaches the maximum height in 1s and then it returns.

What would be the initial velocity of the ball ?
At what maximum height would the ball have reached?

D Watch Video Solution

5. Weight of the body on the earth is 98 N .

What would be the acceleration produced in
the body when 30 N force is applied to it?
$\left(g=9.8 m s^{-2}\right)$

- Watch Video Solution

6. Relative density of silver is 10.8 . The density of water is $10^{3} \mathrm{kgm}^{-3}$. What is the density of silver in SI unit?

- Watch Video Solution

7. Mass of the planet Jupiter is $2 \times 10^{27} \mathrm{~kg}$ and its radius is $7.14 \times 10^{7} \mathrm{~m}$. Calculate
gravitational acceleration on its surface.

$$
\left(G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}\right)
$$

D Watch Video Solution

8. The mass of an empty beaker of 500 mL is

250 g . What will be the densty of the empty beaker? (Neglect the volume of material of the
beaker.) What will be the relative density of the empty beaker? If water of $100 \mathrm{~mL}, 200 \mathrm{~mL}$,

300 mL is filled in the beaker, find the density of beaker filled with water each time. What will be
the relative density of the beaker filled with water each time? Put the calculated values in
hte given table. Density of water $=1000 \mathrm{kgm}^{-3}, 1 \mathrm{~mL}=10^{-6} \mathrm{~m}^{3}$.

How much water must be filled in beaker so that it sinks in a bucket filled with water.

- View Text Solution

9. The dimensions of wooden black are
$2 m \times 0.125 m \times 0.10 m$. If the relative density
of wood is 0.6 , calculate the mass of wooden block Density of water is $10^{3} \mathrm{kgm}^{-3}$.

- Watch Video Solution

10. Mona weighs 423 N on the earth and 1000 N on the planet Jupiter. What is the gravitational acceleration on the Jupiter? (The value of g on the earth is $10 m s^{-2}$).

D
 Watch Video Solution

11. The weight of Raju on the moon is $\frac{1}{6}$ times than that on the earth. Raju can lift 15 kg of mass on the earth. How much maximum mass can he lift on the moon by applying the same force ?

- Watch Video Solution

12. Find the average density of the earth in the terms of g. G and R_{e}.
13. How does the mass of the given object depend on the mass and radius of the earth?

In an imaginary case, if the diameter of earth becomes half to the present diameter, and mass becomes four times to the present mass, then what will be the effect on the weight of the object?

- Watch Video Solution

14. Two objects of same volume and masses m_{1}
and m_{2} are allowed to fall freely from the
heights hi and h, respectively. Find the ratio of
their time to reach earth's surface. Now, if (i) one of the objects is hollow and other is solid
(ii) both of them are hollow. then what will be the effect on this ratio ?

- Watch Video Solution

15. A cube of length 5 cm is immersed first in
water and then in common salt solution. In
which case would the buoyant force be more on the cube? Why?

Now, if the length of the cube is made 4 cm and immersed in water, then in this new case what would be the effect on buoyant force on the cube as compared to the first case of water ?

D Watch Video Solution

16. A ball of mass 4 kg and density 4000 kg m
${ }^{-3}$ is fully immersed in water. The density of is
$10^{3} \mathrm{kgm}^{-3}$. Find the buoyant force exerting on the ball. Take $g=10 \mathrm{~ms}^{-2}$

Question Based On Practical Skills With Answers

1. Jasmin is doing an experiment to find the pressure exerted by an iron cuboid of dimensions $3 \mathrm{~cm} \times 6 \mathrm{~cm} \times 15 \mathrm{~cm}$ on loose sand. She will observe that iron cuboid exerts maximum pressure when it is placed on sand with its sides of dimensions.
A. $6 \mathrm{~cm} \times 15 \mathrm{~cm}$
B. $15 \mathrm{~cm} \times 3 \mathrm{~cm}$
C. $3 \mathrm{~cm} \times 6 \mathrm{~cm}$
D. $3 \mathrm{~cm} \times 15 \mathrm{~cm}$

Answer: B

D Watch Video Solution

2. An iron cuboid of dimensions

$12 \mathrm{~cm} \times 5 \mathrm{~cm} \times 2 \mathrm{~cm}$ is placed on a bed of sand. Which of its surface in contact will apply
the maximum pressure on the sand band ?
A. $12 \mathrm{~cm} \times 2 \mathrm{~cm}$
B. $2 \mathrm{~cm} \times 5 \mathrm{~cm}$
C. $5 \mathrm{~cm} \times 12 \mathrm{~cm}$
D. the pressure will be the same of all surfaces.

Answer: B
3. A glass slab has dimensions
$8 \mathrm{~cm} \times 5 \mathrm{~cm} \times 4 \mathrm{~cm}$. If the density of glass is
$2.5 \times 10^{3} \mathrm{kgm}^{-3}$, the pressure exerted by the glass slab when it rests on the surface with dimensions $5 \mathrm{~cm} \times 4 \mathrm{~cm}$ is
A. 0.8 Pa
B. 8.0 Pa
C. 2000Pa
D. $2 \times 10^{4} \mathrm{~Pa}$

Answer: C

- Watch Video Solution

4. State Archimedes' Principle. Why does a body undergo a loss in its weight when immersed in a liquid ?

- Watch Video Solution

5. The dimensions of a cuboidal block are
$2.5 m \times 2 m \times 1.2 m$. Its weight is 900 N . Find
the minimum pressure exerted by the block on the surface of its support.

- Watch Video Solution

6. Prashant carried out an experiment to the relative density of salty water. His observations are as follows:
(i) The weight of iron block in air $=3500 \mathrm{~N}$
(ii) The weight of the iron block in water $=3000$

N
(iii) The weight of the iron block in salty water
$=2960 \mathrm{~N}$

What relative density of salty water did he find?

- Watch Video Solution

7. In an experiment on measurement of loss in
weight of an iron ball immersed in tap water
and salty water separately. When is the maximum loss in weight of iron ball observed ?
8. You are given a sphere of radius 2 cm . If you are asked to select a best suited spring balance to determine its weight, then what should be the range and least count of the spring balance? (The density of the sphere is $\left.7 \times 10^{3} \mathrm{kgm}^{-3}\right)$.
A. Range 0-1000 gwt,least count - 5gwt
B. Range 0-500 gwt,least count - 2.5 gwt
C. Range 0-250 gwt,least count - 2.5 gwt
D. Range 0-100 gwt,least count - 1.0 gwt

Answer: C

- Watch Video Solution

9. A block of gold and a block of wood both
have the same volume. If both are submerged
in water, then write in two points that which block will experience more buoyant force?

D Watch Video Solution

1. The minimum amount of energy required the most loosely bounded electron is called

- Watch Video Solution

2. When does the value of energy become zero
for an electron?

- Watch Video Solution

Activity 104

1. Take an empty plastic bottle . Close the mouth of the bottle with an airtight stopper .

Put it in a bucket filled with watere . The bottle floats .

Push the bottle into the water. You feel an upward push. Try to push it further down. You will find it difficult to push deeper and deeper.

Water exerts a force on the bottle in upward direction. Now release the bottle. It bounces back to the surface.

Does the force due to the gravitational attraction of the earth act on this bottle? If so,
why doesn't the bottle stay immersed in water after it is released?

- Watch Video Solution

2. Take an empty plastic bottle . Close the mouth of the bottle with an airtight stopper . Put it in a bucket filled with watere . The bottle floats .

Push the bottle into the water. You feel an upward push. Try to push it further down. You will find it difficult to push deeper and deeper.

Water exerts a force on the bottle in upward
direction. Now release the bottle. It bounces back to the surface.

How can you immerse the bottle in water ?

-

Watch Video Solution

