© 'doubtnut

 India's Number 1 Education App
MATHS

BOOKS - ICSE

CHAPTER REVISION (STAGE 2)

Rational And Irrational Numbers

1. Simplify :
$7 \sqrt{\frac{1}{3}}-2 \frac{1}{3} \sqrt{\frac{1}{3}}+3 \sqrt{147}$

Watch Video Solution
2. Express $3 \cdot \overline{2} \overline{5} \overline{3}$ as a fractions in the form $\frac{x}{y}$ where $x, y \in I$ and $y \neq 0$
3. If $x=5-2 \sqrt{6}$, find the value of:
$x^{2}+\frac{1}{x^{2}}$

- Watch Video Solution

4. If $x=5-2 \sqrt{6}$, find the value of :
$x^{2}+\frac{1}{x^{2}}$

- Watch Video Solution

5. Prove that $\sqrt{5}$ and $3 \sqrt{5}$ are irrational numbers.

- Watch Video Solution

6. If $2 x=3+\sqrt{7}$, find the value of : $4 x^{2}+\frac{1}{x^{2}}$

Compound Interest

1. A man saves rupes 5000 every years and invests it at the end of the year at 10 \% P.a. Compound interest. Calculate the total amount of his savings at the end of the third years.

- Watch Video Solution

2. The compound interest compounded annually, on a certain sum is 29,040 in second year and is 31,944 in third year. Calculate. the rate of interest.

- Watch Video Solution

3. The compound interest compounded annually, on a certain sum is 29,040 in second year and is 31,944 in third year. Calculate. the rate of interest.

- Watch Video Solution

4. The compound interest compounded annually, on a certain sum is 29,040 in second year and is 31,944 in third year. Calculate. the rate of interest.

- Watch Video Solution

5. A certain sum of money amounts to 4,500 in first year, to 5,175 in second year and to 6,210 in third year. Find the rate of interest for the. second year
6. A certain sum of money amounts to 4,500 in first year, to 5,175 in second year and to 6,210 in third year. Find the rate of interest for the. third year

D Watch Video Solution

7. Without using formula, find the difference between the compound interest and the simple interest on rupes 16,000 at 9\% per annum in 2 years.

- Watch Video Solution

8. Amit borrowed 20,000 at 12% per annum compound interest. If he pays 40% of the sum borrowed at the end of the first year and 40% of the sum borrowed at the end of the second year, find the amount of loan outstanding at the beginning of the third year.
9. Garima borrowed 40,000 at 10% p.a. simple interest. She immediately inverted this money at 10% p.a., compounded half-yearly. Calculate Garima's gain in 18 months.

- Watch Video Solution

10. At the beginning of year 2011, a man had 22,000 in his bank account. He saved some money by the end of this year and deposited it in the bank. The bank pays 10\% per annum compound interest and at the end of year 2012 he had 39,820 in his bank account. Find, what amount of money he had saved and deposited in his account at the end of year 2011.

- Watch Video Solution

11. A sum of 16,000 , invested at simple interest, amounts to 22,400 in 4 years at a certain rate of interest. If the same sum of money is invested for 2 years at the same rate of interest, compounded p.a., find the compound interest earned.

D Watch Video Solution

12. If the amounts of two consecutive years on a sum of money are in the ratio $20: 21$, find the rate of interest.

- Watch Video Solution

13. The cost of a car, purchased 2 years ago, depreciates at the rate of 20% every year. If its present value is $2,52,480$, find : its purchase price.
14. The cost of a car, purchased 2 years ago, depreciates at the rate of 20% every year. If its present value is $2,52,480$, find : its value after 1 year.

- Watch Video Solution

15. If $x^{2}+y^{2}=37$ and $x y=6$, find

$$
x+y
$$

- Watch Video Solution

16. If $x^{2}+y^{2}=37$ and $x y=6$: find $x-y$
(D) Watch Video Solution
17. If $x^{2}+y^{2}=37$ and $x y=6$, find $x^{2}-y^{2}$

- Watch Video Solution

18. If $3 a+\frac{1}{3 a}=2 \sqrt{3}$, evaluate:
$3 a-\frac{1}{3 a}$

- Watch Video Solution

19. If $3 a+\frac{1}{3 a}=2 \sqrt{3}$, evaluate:
$9 a^{2}+\frac{1}{9 a^{2}}$

- Watch Video Solution

20. If $3 a+\frac{1}{3 a}=2 \sqrt{3}$, evaluate:
$81 a^{4}+\frac{1}{81 a^{4}}$

- Watch Video Solution

21. Expand : $(2 x-y+2)^{3}$

- Watch Video Solution

22. Expand : $(x-2 y+6)(x-2 y-6)$.

- Watch Video Solution

23. Expand $(2 a-4 b+7)(2 a+4 b+7)$

- Watch Video Solution

24. If $a+b=1$ and $a-b=7$, find :
$a^{2}+b^{2}$

D Watch Video Solution

25. If $a+b=1$ and $a-b=7$, find :
$a b$

- Watch Video Solution

26. If $x \neq 0$ and $3 x+\frac{1}{3 x}=8$, find the value of : $27 x^{3}+\frac{1}{27 x^{3}}$

D Watch Video Solution

27. If $x-y+z=5$ and $x^{2}+y^{2}+z^{2}=49$, find the value of $: z x-x y-y z$.
28. Foctorise :
$x(a-5)+y(5-a)$

- Watch Video Solution

2. Foctorise :
$x^{2}+\frac{1}{x^{2}}-2-3 x+\frac{3}{x}$

- Watch Video Solution

3. Foctorise :
$x^{2}-2 x-9$
4. Foctorise :
$\frac{1}{3} x^{2}-\frac{8}{x}$

- Watch Video Solution

5. Foctorise :
$7 \sqrt{2} x^{2}-10 x-4 \sqrt{2}$

- Watch Video Solution

6. Foctorise :
$\left(a^{2}+3 a-5\right)\left(a^{2}+3 a+2\right)+6$.

Watch Video Solution
7. Foctorise :
$50 x^{2}-2(x-2)^{2}$

Watch Video Solution

8. By foctorising $x^{2}-22 x+117$, evaluate

$$
\left(x^{2}-22 x+117\right)+(x-13)
$$

- Watch Video Solution

9. The expression $(a-b)^{3}+(b-c)^{3}+(c-a)^{3}$ can be factorized as
(a) $(a-b)(b-c)(c-a)$
(b) $3(a-b)(b-c)(c-a)$
(c) $-3(a-b)(b-c)(c-a)$
(d) $(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
10. Evaluate : and write the answer in factors form :

$$
(3 a-2 b)^{3}+(2 b-5 c)^{3}+(5 c-3 a)^{3}
$$

- Watch Video Solution

Simultaneous Equations

1. Find the value of x and $\mathrm{y}: a x+b y=a-b$
$b x-a y=a+b$

- Watch Video Solution

2. $a x+b y=c$
$b x+a y=1+c$
3. Solve : $0.04 x+0.02 y=5$ and $0.5(x-2)-0.4 y=29$

- Watch Video Solution

4. The expressions $a x+$ by has value 7 when $x=2$ and $y=1$. It has value 1 when $x=-1$ and $y=1$. Find a and b.

- Watch Video Solution

$$
\begin{aligned}
& \text { 5. Solve the following } \\
& \frac{1}{2(x+2 y)}+\frac{5}{3(3 x-2 y)}=\frac{-3}{2}, \\
& \frac{5}{4(x+2 y)}-\frac{3}{5(3 x-2 y)}=\frac{61}{60}
\end{aligned}
$$

6. Susan invested certain amount of money in two schemes A and B, which offer interest at the rate of 8% per annum and 9% per annum, respectively. She received Rs. 1860 as annual interest. However, had she interchanged the amount of investments in the two schemes, she would have received Rs. 20 more as annual interest. How much money did she invest in each scheme?

- Watch Video Solution

7. Some money is to be distributed equally among children of a locality. If there are 8 children less, every one will get 10 more and if there are 16 children more, every one will get 10 less. What is the total amount of money to be distributed ?

D Watch Video Solution

8.3 men and 4 boys can do a piece of work in 14 days, while 4 men and 6 boys can do it in 10 days. How long would it take 1 boy to finish the work?

(D) Watch Video Solution

9. A train leaves New Delhi for Ludhiana, 324 km away, at 9 a.m. One hour later, antoher train leaves Ludhiana for New Delhi. They meet at noon. If the second train had started at 9 a.m. and the first train at 10.30 a.m., they both would still have met at noon. Find the speed of each train.

- Watch Video Solution

10. Beaker A contains sugar solution with 18 percent sugar. beaker B contains sugar solution with 12 percent sugar. How much of each
must he mixed together to get solution of 16 percent sugar weighing 240 gm of it?

Watch Video Solution

Indices

1. Solve for $\mathrm{x}: \sqrt{32^{0}+\frac{2}{3}}=(0.6)^{2-3 x}$

D Watch Video Solution

2. Solve : $\left\{\left(625^{-\frac{1}{2}}\right)^{-\frac{1}{4}}\right\}=(0.2)^{4-3 x}$

Watch Video Solution

3. Evaluate : $\sqrt{x^{a-b}} \times \sqrt{x^{b-c}} \times \sqrt{x^{c-a}}$
4. Simplify :
$: \frac{\left(x+\frac{1}{y}\right)^{a}\left(x-\frac{1}{y}\right)^{b}}{\left(y+\frac{1}{x}\right)^{a}\left(y-\frac{1}{x}\right)^{b}}$

Watch Video Solution

5. Solve for m :
$15^{27}+15^{2}=15^{2}+15^{5 m+2}$
(D) Watch Video Solution
6. If $a=2^{x}$ and $b=2^{x+1}$,

Show that, $\frac{8 a^{3}}{b^{2}}=2^{x+1}$

Logrithms

1. Show that $\log _{3} 9+\log _{3} 3=\log _{5} 125$

- Watch Video Solution

2. Express as a single logaritham and simplify :
$3 \log 5-\log 50+2 \log 2+1$

- Watch Video Solution

3. Solve for x :
$\log _{\sqrt{3}}(x+1)=2$

- Watch Video Solution

4. Solve for x :
$\log _{4}(2 x+3)=\frac{3}{2}$

Watch Video Solution

5. If $\log _{3} y=x$ and $\log _{2} z=x$, find 72^{x} in terms of y and z .

(D) Watch Video Solution

6. If lot $7-\log 2+\log 16-2 \log 3-\log \frac{7}{45}=1+\log k$, find the value of k.

D Watch Video Solution

7. Evaluate :
$\underline{\log 8 \times \log 9}$
$\log 27$
8. Evaluate :
$\log 27$
$\log \sqrt{3}$

- Watch Video Solution

Triangles

1. In the given figure D is mid-point of $A B$. $D E / / B C$ and $D F / / A C$. Prove that : $\mathrm{DE}=\mathrm{BF}$

- Watch Video Solution

2. If the areas of two similar triangles are equal, prove that they are congruent.

- Watch Video Solution

3. If two sides of a right triangles containing right angle, are equal to corresponding sides of another right angle triangle, the triangle are

- Watch Video Solution

4. If two triangles are congrent, then the corresponding angles are equal

- Watch Video Solution

5. If two angles and a side of one triangles are equal to two angles and a side of another triangles, the triangles are congruent.

- Watch Video Solution

6. Show that the two triangles given the following figure are congruent.

- Watch Video Solution

Isosceles Triangles

1. In the following figure , $A B=A C$, $E C=E D$
$\angle A B F=45^{\circ}$ and $\angle A B C=70^{\circ}$

Find the angles represented by letters a,b,c,d,e,f and g.

- Watch Video Solution

2. In the given below $A B$ is parallel to $C D$ and $C A=C E$.

If angle $\mathrm{ACE}=74^{\circ}$ and $\angle E A B=15^{\circ}$ find the angles AEB and BCD .
3. In the given figure, $\mathrm{AD}=\mathrm{DB}=\mathrm{DE} \angle E A C=\angle F A C$ and $\angle F=90^{\circ}$ Prove that
(i) $\angle A E B=90^{\circ}$
(ii) $\triangle C E G$ is isosceles.
(iii) $\angle C E G=\angle E A F$

4. In an isosceles triangles the angles are in the ratio 7: 4:7 Find each base angle of the triangles.

- Watch Video Solution

5. Find the angles of an isoscles triangles, if the ratio of the base angle to the vertical angle is $2: 5$

- Watch Video Solution

6. $A B C$ is an equilateral triangle .If $A D$ bisects angle A, Prove that $A D$ is perpendicular bisector of $B C$.

- Watch Video Solution

1. In the following figure, $A E / / B C$. Find values of x and y.

- Watch Video Solution

2. Two sides of a triangles are 8 cm and 11 cm . The length of its third side lies between $a c m b c m$, find the values of a and b if $a<b$.
3. Prove that in a quadrilateral the sum of all the sides is greater than the sum of its diagonals.

Watch Video Solution

4. The side $B C$ of triangles $A B C$ is produced to D so that $C D=A C$. If the angle $\operatorname{BAD}=109^{\circ}$ and the $\mathrm{ACB}=72^{\circ}$ prove that BD is greater than AD.
5. In the following figure $\mathrm{AB}=\mathrm{AD}, \mathrm{AC}=\mathrm{AE}$ and $\angle B A D=\angle C A E$,

Prove that : $B C=E D$

- Watch Video Solution

Mid Point Theorem

1. In triangle $A B C, P$ is mid-point of $A B$ and Q is mid-point of $A C$. If $A B=$ $9.6 \mathrm{~cm}, \mathrm{BC}=11 \mathrm{~cm}$ and $\mathrm{AC}=11.2$, find the perimeter of the trapezium

PBCQ.

- Watch Video Solution

2. In $\triangle A B C, D$ is mid-point of AB and E is
mid -point of $B C$. Calculate
(i) DE if $\mathrm{AC}=6.4 \mathrm{~cm}$,
(ii) $\angle D E B$ if $\angle A C B=63^{\circ}$

(D) Watch Video Solution

3. In $\triangle A B C, D, E$ and F are mid-point of sides AB, BC and AC respectively , Prove that AE and DF bisect each other.
4. In a kite shaped figure $A B C D, A B=A D$ and $C B=C D$, point P, Q and r are mid-point of sides $A B, B C$ and $C D$ respectively . Prove that:
(i) $\angle P Q R=90^{\circ}$
(ii) Line through P and parallel to $Q R$ bisects side AD.

D Watch Video Solution

5. P, Q, R and S are the mid points of sides $A B, B C, C D$ and $D A$ respectively of rhombus $A B C D$. Show that $P Q R S$ is a rectangle.

Under what conditions will PQRS be a square ?

D Watch Video Solution

6. In a scalene triangle $A B C, A D$ and $B E$ are medians F is a point in $A C$ so that $D F / / B E$. Show that : $A C=4 \times E F$.
7. Show that the quadrilateral, formed by joining the mid-points of the sides of a square, is also a square.

- Watch Video Solution

8. $A B C$ is an isosceles triangle with $A B=A C=13 \mathrm{~cm}$ and $B C=10 \mathrm{~cm}$.

Calculate the length of the perpendicular from A to $B C$.

- Watch Video Solution

9. In triangle $A B C, A B>A C$. E is the mid-point of $B C$ and $A D$ is perpendicular to BC . Prove that : $A B^{2}+A C^{2}=2 A E^{2}+2 B E^{2}$

D Watch Video Solution

10. In the following figure:
$O A=2 c m$

$$
=A B=2 B C=\frac{1}{2} C D=\frac{1}{6} D E \text { Find the length of } \mathrm{OE} .
$$

- Watch Video Solution

11. $A B C$ is a triangle in which $A B=A C$ and D is any point on $B C$. Prove that:

$$
A B^{2}-A D^{2}=B D \cdot C D
$$

D Watch Video Solution

12. $A B C$ is an isosceles triangle with $A B=A C=2 a$ and $B C=a$. If $A D \perp B C$, find the length of AD.

Rectilinear Figures

1. In the given figures $A B C D$ is a trapezium with $D C / / A B$, $\angle A O B=126^{\circ}$ and $\angle D C Q=\angle C D P=52^{\circ}$

- Watch Video Solution

2. The perimeter of a parallelogram $A B C D=40 \mathrm{~cm}, A B=3 x \mathrm{~cm}, B C=2 x$ cm and $C D=2(y+1) c m$. Find the values of x and y.
3. $A B C D E$ is a pentagon in which $A B=A E, B C=E D$ and $\angle A B C=\angle A E D$.

Prove that
$A C=A D$
(ii) $\angle B C D=\angle E D C$

- Watch Video Solution

4. In the parallelogram $A B C D, M$ is mid-point of $A C$ and X, Y are points on $A B$ and $D C$ respectively such that $A X=C Y$.

Prove that:

(i) Triangle AXM is congruent to triangle
(ii) $X M Y$ is a straight line.

- Watch Video Solution

Constructions Of Polygons

1. Contruct a parallelogram in which diagonals are 6.5 cm and 4 cm long and angle between them is 60°

- Watch Video Solution

2. Contruct a square $A B C D$ is which
each side $=5 \mathrm{~cm}$
3. Contruct a square $A B C D$ is which
diagonals $\mathrm{AC}=9 \mathrm{~cm}$

- Watch Video Solution

4. Contruct a rhombus $A B C D$ is which
each side $=6 \mathrm{~cm} \angle B=45^{\circ}$

- Watch Video Solution

5. Construct a rhombus $A B C D$ in which
$\mathrm{AC}=5.6 \mathrm{~cm}$ and $\mathrm{BD}=6.3 \mathrm{~cm}$

- Watch Video Solution

6. Contruct a rectangle $A B C D$ with diagonal $A C=6.6 \mathrm{~cm}$, side $B C=5.2$
7. The following diagram shows two parallelogram ABCD and BEFG

Prove that:
Area of $A B C D=$ Area of BEFG.

- Watch Video Solution

8. In the parallelogram $A B C D$, the side $A B$ is produced to the point X.so that $B X=A B$. The line $D X$ cuts $B C$ at E. Prove that : DBXC is a parallelogram.

- Watch Video Solution

9. In the parallelogram $A B C D$, the side $A B$ is produced to the point X.so that $B X=A B$. The line $D X$ cuts $B C$ at E. Prove that :

Area $(\triangle A E D)=2 \times$ area $(\triangle C E X)$.

- Watch Video Solution

10. In the following figure G, is centroid of the triangles $A B C$.

Prove that
$\operatorname{Area}(\Delta$ AGB $)=\frac{1}{3} \times$ Area $(\triangle A B C)$

- Watch Video Solution

11. Use the informations given in the following figure to show that ar.
$(A B C Q)=\operatorname{ar}(A B C D E)$

[Given : I // m and p//n]

(Watch Video Solution

12. If each diagonals of a quadrilateral separates it into two triangles of equal area then show that the quadrilateral is a parallelogram.

- Watch Video Solution

13. $A B C D, A B E F$ and AGHF are parallelogram

Prove that the area of parallelogram $A B C D=$ area of parallelogram

AGHE

- Watch Video Solution

14. The area of the parallelogram ADFE is $275 \mathrm{~cm}^{2}$ and $A D=12.5 \mathrm{~cm}$.

Find the distances between point D and side. EF .

- Watch Video Solution

15. Prove Equal chords of a circle subtend equal angles at the centre.
16. A line segment $A B$ is length 8 cm . Draw a circle of radius 5 cm that passes thorugh A and B.

Can you draw a circle of radius 3 cm passing through A and B ? Give reason In support of your answer.

- Watch Video Solution

17. Two circles of radii 10 cm and 17 cm . Intersecting each other at two points and the distances between their centres is 21 cm . Find the length of the common chords.

- Watch Video Solution

18. In the given circle. Arc APB and are BQC are in the ratio $2: 5$ and O is centre of the circle.

If angle $\mathrm{AOB}=44^{\circ}$: Find angle AOC.

- Watch Video Solution

19. In the given figures, O is the centre of the given circle. $A B$ is a side of a square , $B C$
is a side of regular pentagon and CD is a side of regular hexagon.
Find:
(i) $\angle A O B$
(ii) $\angle A O C$
(iii) $\angle A O D$
(iv) $\angle B C D$

B

- Watch Video Solution

Statistics

1. Contruct a cumulative frequency distributions table from the following frequency table:

- Watch Video Solution

2. Contruct a cumulative frequency distributions table from the following frequency table:

Class interval	Cumulative frequency
$1-10$	7
$11-20$	15
$21-30$	30
$31-40$	42
$41-50$	60
$51-60$	75

- Watch Video Solution

1. Find the mean of the following numbers :

62,58,84,71,68,70,53,63,56 and 65.

- Watch Video Solution

2. Find the median for the following data:

505927785472
585731654260
223740 and 28

D Watch Video Solution

3. The mean of 20 numbers is 20 . if 2 is added to each of the first 10 numbers. Find the mean of the new set of 20 numbers.
4. The mean of $2,12,4,9,5$ and 16 is x. The median of $4,3, x, x-1,12$ and 16 is y. Find the value of x and y.

- Watch Video Solution

Area And Perimeter Of Plane Figures

1. The base of a triangular field is 2.4 times its height. If the cost of leveling the field at the rate of rupes 20 per square metre is rupes 9,600 find its base and height.

- Watch Video Solution

2. $A B C$ and $B D E$ are two equilateral triangles such that D is the midpoint of $B C$. If $A B=20 \mathrm{~cm}$. Find the area of the shaded portions [Take
$\sqrt{3}=1.73]$

- Watch Video Solution

3. Find the perimeter of the adjoining figure.

Given : $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{AC}=13 \mathrm{~cm} . \mathrm{DE}=\mathrm{FG}=5 \mathrm{~cm}, \mathrm{EF}=10 \mathrm{~cm}$ and $\mathrm{GD}=4$ cm .
4. Each side of a square $A B C D$ is 12 cm A point P I lies on side DC such that area of $\triangle A D P$: area of trapezium $\mathrm{ABCP}=2: 3$ Find DP .

- Watch Video Solution

5. In a pentagon ABCDE, DP is drawn perpendicular to $A B$ and is perpendicular to $C E$ also at point Q. If $A P=B P=12 \mathrm{~cm} E Q=C Q=8 \mathrm{~cm}$. $D E=D C=10 \mathrm{~cm}$ and $D P=18 \mathrm{~cm}$. Find the area of the pentagon ABCDE.

- View Text Solution

6. A rectangular park has dimensions 240 m by 200 m . A circular lawn is made inside the park. If the area of the park excluding the lawn is

32600 sq m. find the circumference of the lawn.

- Watch Video Solution

7. How many circular discs, each of 4 cm radius, can be cut from the rectangular metal sheet with dimensions :

75 cm and 48 cm

- Watch Video Solution

8. How many circular discs, each of 4 cm radius, can be cut from the rectangular metal sheet with dimensions :

64 cm and 60 cm

(D) Watch Video Solution

Solids

1. A box 3 m long. 62.5 cm wide and 65 cm deep is to be made . It is to be open at the top. Ignoring the thickness of the sheet of which box is
made. Determine :
area of the sheet required to make the box.

- Watch Video Solution

2. A box 3 m long. 62.5 cm wide and 65 cm deep is to be made. It is to be open at the top. Ignoring the thickness of the sheet of which box is made. Determine :
the cost of sheet used at the rate of rupes 200 per m^{2}

- Watch Video Solution

3. The paint in a certain container is sufficient to paint an area equal to $9.375 \mathrm{~m}^{2}$. How many bricks of dimensions
$22.5 \mathrm{~cm} \times 10 \mathrm{~cm} \times 7.5 \mathrm{~cm}$ can be painted out of this container?

- Watch Video Solution

4. A rectangular container has base of length 12 cm and width 9 cm . A cube of edge 6 cm is placed in the container and then sufficient water is filled into it so that the cube is just submerged. Find the fall in level of the water. In the container, when the cube is removed.

- Watch Video Solution

5. A rectangular container has base is a square of side 12 cm . Contains sufficient water to submerge a rectangular solid $8 \mathrm{~cm} \times 6 \mathrm{~cm} \times 3 \mathrm{~cm}$. find the rise in level of the water in the container when the solid is completely immersed in it.

- Watch Video Solution

6. A field is 120 m . long and 50 m broad. A tank 24 m long. 10 m broad and 6 m deep is dug any where in the field and the earth taken out of
the tank is evenly spread over the remaining part of the field. Find the rise in level of the field.

- Watch Video Solution

7. A village, having a population of 4000 , requires 150 litres of water per head per day. It has a tank measuring $20 m \times 15 m \times 6 m$. For how many days will the water of this tank last?

- Watch Video Solution

Trigonometry

1. If $6 \tan \mathrm{~A}-5=0$, find the value of :

$$
\frac{3 \sin A-\cos A}{5 \cos A+9 \sin A}
$$

- Watch Video Solution

2. If $2 \cot A=3$, find the value of

$$
\frac{5 \sin A-2 \cos A}{6 \cos A+\sin A}
$$

- Watch Video Solution

3. If $\cot \theta=\frac{x}{y}$, find the value of:

$$
\frac{x \cos \theta+y \sin \theta}{y \sin \theta-x \cos \theta}
$$

- Watch Video Solution

4. In $\triangle A B C, \angle B=90^{\circ}$ and $\sin A=\frac{8}{11}$

Show that :
$` \sec ^{\wedge}(2) A-\tan ^{\wedge}(2) A=1$

- Watch Video Solution

5. In $\triangle A B C, \angle B=90^{\circ}$ and $\sin A=\frac{8}{11}$

Show that:
$\cot ^{2} A-\operatorname{cosec}^{2} A+1=0$

- Watch Video Solution

6. If $\mathrm{A}=60^{\circ}$ and $B=30^{\circ}$, find the value of
$(\sin A \cos B+\cos A \sin B)^{2}+(\cos A \cos B-\sin A \sin B)^{2}$

- Watch Video Solution

7. If $x=15^{\circ}$, evaluate:
$4 \cos 2 x \cdot \sin 4 x \cdot \tan 3 x-1$

Watch Video Solution

8. If $x=30 o$, verify that $: \tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
$\sin x=\sqrt{\frac{1-\cos 2 x}{2}}$

- Watch Video Solution

9. Find the value of $: \sqrt{\frac{1-\sin ^{2} 60^{\circ}}{1-\cos ^{2} 60^{\circ}}}$

Watch Video Solution

10. If $\cos 3 x=0$ and x is acute find the value of:
$\sin x$

(D) Watch Video Solution

11. If $\cos 3 x=0$ and x is acute find the value of:
12. If $\cos 3 x=0$ and x is acute find the value of : $\cot ^{2} x-\operatorname{cosec} 2$

- Watch Video Solution

13. If $\cot ^{2} A-3=0$ find :
$\sin 2 \mathrm{~A}$

- Watch Video Solution

14. If $\cot ^{2} A-3=0$ find:
$\cos 3 \mathrm{~A}$
15. The length of a string between a kite and a point on the ground is 90 metres. If the string makes an angle θ with the ground level such that $\tan \theta=\frac{15}{8}$, how high is the kite? Assume that there is no slack in the string.

- Watch Video Solution

16. In the following figure , angle
$B=90^{\circ} \angle A D B=30^{\circ}$ and $\angle A C B=60^{\circ}$
If $\angle C D=m$ find AB .
`(\#\#SEL_RKB_ICSE_MAT_IX_CR_02_E01_162_Q01.png" width="80\%">

- Watch Video Solution

17. Evaluate :
$\frac{\cos 58^{\circ}}{\sin 32^{\circ}}+\frac{\sin 22^{\circ}}{\cos 68^{\circ}}-\cos 90^{\circ}$
18. Evaluate without using trigonometric tables.
$2\left(\frac{\tan 35^{\circ}}{\cot 55^{\circ}}\right)^{2}+\left(\frac{\cot 55^{\circ}}{\tan 35^{\circ}}\right)^{2}-3\left(\frac{\sec 40^{\circ}}{\operatorname{cosec} 50^{\circ}}\right)$

- Watch Video Solution

19. Evaluate :
$\sec 26^{\circ} \sin 64^{\circ}+\frac{\operatorname{cosec} 33^{\circ}}{\sec 57^{\circ}}$

- Watch Video Solution

20. Evaluate
$\frac{5 \sin 66^{\circ}}{\cos 24^{\circ}}-\frac{2 \cot 85^{\circ}}{\tan 5^{\circ}}$
D Watch Video Solution

21. Evaluate

$\cos 40^{\circ} \operatorname{cosec} 50^{\circ}+\sin 50^{\circ} \sec 40^{\circ}$

- Watch Video Solution

22. Evaluate
$\sin 27^{\circ} \sin 63^{\circ}-\cos 63^{\circ} \cos 27^{\circ}$

- Watch Video Solution

23. Evaluate :
$3 \frac{\sin 72^{\circ}}{\cos 18^{\circ}}-\frac{\sec 32^{\circ}}{\operatorname{cosec} 58^{\circ}}$
24. Evaluate
$3 \cos 80^{\circ} \operatorname{cosec} 10^{\circ}+2 \cos 59^{\circ} \cos e c 31^{\circ}$

- Watch Video Solution

25. Evaluate :
$\frac{\cos 75^{\circ}}{\sin 15^{\circ}}+\frac{\sin 12^{\circ}}{\cos 78^{\circ}}-\frac{\cos 18^{\circ}}{\sin 72^{\circ}}$

D Watch Video Solution

26. Prove that :
$\sec ^{2}\left(90^{\circ}-\theta\right)-\frac{1}{\cot ^{2}\left(90^{\circ}-\theta\right)}=1$

D Watch Video Solution

27. Find θ; if $\sin \left(\theta+36^{\circ}\right)=\cos \theta$; where $\theta+36^{\circ}$ is an acute angle.
28. If in $\triangle A B C, \angle C=90^{\circ}$ prove that:
$\frac{1+\tan A}{1-\cot B} \times \frac{1-\tan A}{1+\cot B}=1$.

- Watch Video Solution

29. If $\cot A=\frac{12}{5}$, verify
$\tan ^{2} A-\sin ^{2} A=\sin ^{4} A . \sec ^{2} A$.

- Watch Video Solution

30. In a right triangle $A B C$, right angled at B. The ratio of $A B$ to $A C=$ $1: \sqrt{2}$, find that the value of $\frac{2 \tan A}{1+\tan ^{2} A}$
31. If $\cot \theta=\frac{3}{4}$ find the value of:
$\sin \theta-\cos \theta$
$\overline{\sin \theta+\cos \theta}$

(D) Watch Video Solution

32. If $\operatorname{cosec} A=\sqrt{3}$, find the value of:
$\frac{2 \sin ^{2} A+3 \cot ^{2} A}{\tan ^{2} A+\cos ^{2} A}$

D Watch Video Solution

33. In an acute angled triangle $A B C$, if $\tan (A+B-C)=1$ and , $\sec (B+C-A)=2$, find the value of $A, B a n d C$.

- Watch Video Solution

34. Prove that $\sin 30^{\circ}=\frac{1}{2}$.
35. If $\tan (A-B)=\frac{1}{\sqrt{3}}$ and $\sin A=\frac{1}{\sqrt{2}}$ find the value of B.

D Watch Video Solution

36. In the following figures $A B=4 \mathrm{~m}$ and $E D=3 \mathrm{~m}$.

If $\sin \alpha=\frac{3}{5}$ and $\cos \beta=\frac{12}{13}$ find the length of BD

- Watch Video Solution

Co Ordinate Geometry

1. Write the co-ordinates of the vertices of a rectangle which is 6 units long and 4 units wide. If the rectangle is in the first quadrant. Its longer side lies on x-axis and oner vertex is at the origin.
2. Show that the line $\mathrm{y}=\mathrm{x}$ bisects angle Xoy.

- Watch Video Solution

3. Draw the lines $3 x-5 y=15$.

- Watch Video Solution

4. Find the slope and thy y-intercept of the lines.
$4 x-3 y=2$

- Watch Video Solution

5. Find the slope and the y-intercept of the lines.
$3 x+2 y=6$.

Graphical Solutions

1. Solve equations $\mathrm{y}=2 \mathrm{x}+1$ and $\mathrm{x}+2 \mathrm{y}+3=0$.

- Watch Video Solution

2. Draw graph of linear equations $4 x-3 y+12=0$. Use graph drawn fo find:
y when $x=-3$

- Watch Video Solution

3. Draw graph of linear equations $4 x-3 y+12=0$. Use graph drawn fo find:
x. when $\mathrm{y}=4$

Distance Formula

1. Find the distance between the origin and the point :
$(-5,12)$

- Watch Video Solution

2. If $A=(2,-3), B=(10, y)$ and $A B=10$ units find the value of y.

D Watch Video Solution

3. Find the co-ordinates of the points on x-axis which are at a distance of 5 units from the poitns. $(5,4)$
4. Point $P(x, y)$ is equidistant from the points $A(-2,0)$ and $B(3,-4)$

Prove that : $10 \mathrm{x}-8 \mathrm{y}=21$.

- Watch Video Solution

5. Calculate the distance between the points $(6,-4)$ and $(3,2)$ correct to 2 decimal places.

- Watch Video Solution

6. Show that the points $P(7,3), Q(6,3+\sqrt{3})$ and $R(5,3)$ from an equilateral triangles.

- Watch Video Solution

7. The points $A(-1,2), B(x, y)$ and $C=(4,5)$ are such that $B A=B C$. Find a linear relations between x and y.

- Watch Video Solution

8. Prove that the points $A(-5,4), B(-1,-2)$ and $C(5,2)$ are the vertices of an isosceles right angled triangles.

- Watch Video Solution

9. If the point $A(a, 2)$ is equidistant from the points $B(8,-2)$ and $C(2,-2)$ find the value of a.

- Watch Video Solution

10. Find the point on y-axis which is equidistant from the points $A(-4,3)$ and $B(5,2)$

D Watch Video Solution

11. Show that the points $A(-5,6), B(3,0)$ and $C(9,8)$ are vertices of an isosceles right angled triangles. Find the area of this triangles.

- Watch Video Solution

12. Find the area of a rhombus $A B C D$ whose vertices are $A(3,0)$ $, B(4,5), C(-1,4)$ and $D(-2,-1)$

(Watch Video Solution

