©゙" doubtnut

MATHS

BOOKS - ICSE

CHAPTERWISE REVISION (STAGE 3)

Rational And Irrational Numbers

1. Rationalise the denominator of:
$\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{5}}$

- Watch Video Solution

2. Express $536 \overline{2} 9$ as a fractions in the form $\frac{x}{y}$ where

 $\mathrm{x}, \mathrm{y}, \in 1$ and $y \neq 0$
- Watch Video Solution

3. Express each of the following as a fractions in the
form $\frac{x}{y}$ where $\mathrm{x}, \mathrm{y}, \in 1$ and $y \neq 0$,
4. $\overline{4}_{7} 6$

- Watch Video Solution

4. If $x^{2}=11+2 \sqrt{30}$, find :
x

- Watch Video Solution

5. If $x^{2}=11+2 \sqrt{30}$, find :
$\frac{1}{x}$

- Watch Video Solution

6. If $x^{2}=11+2 \sqrt{30}$, find :
$x+\frac{1}{x}$

Compound Interest

1. If $x^{2}=11+2 \sqrt{30}$, find :
$x-\frac{1}{x}$

- Watch Video Solution

2. Prove that $2+\sqrt{3}$ is an irrational number.

- Watch Video Solution

3. If $x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}$ and $y=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$ find the value of $x^{2}+y^{2}$

D Watch Video Solution

4. The interest charged on a certain sum is 720 for one year and 1.497.60 for two years. Find, whether
the interest is simple or compound Also, calculate the rate per cent and the sum.
5. The population of a town increases 10% every 3 years. If the present population of the town is 72.600, calculate its population 6 years ago.

- Watch Video Solution

6. The population of a town increases 10% every 3
years. If the present population of the town is
72.600, calculate
its population 6 years ago.

- Watch Video Solution

7. The cost of a machine depreciated by rupes 4,752 during the second year and by 4,181.76 during the third year. Calculate :
the rate of depreciation:

- Watch Video Solution

8. The cost of a machine depreciated by rupees

4,752 during the second year and by 4,181.76 during the third year. Calculate :
the original cost of the machine,
9. The cost of a machine depreciated by rupes 4,752 during the second year and by 4,181.76 during the third year. Calculate :
the cost of the machine at the end of the third year.

- Watch Video Solution

10. Pramod borrowed 60,000 at 12% per annum
compound interest. If he pays 50% of the sum borrowed at the end of the first year and 50% of the remaining loan at the end of the second year, find the amount of loan outstanding at the beginning of the third year.
11. Roshan invests $2,40,000$ for 2 years at 10% per annum compounded anually. If the income tax at 20% is deducted at the end of each year on the interest accrued, find the amount he will receive at the end of 2 years.

- Watch Video Solution

12. Amol bought a plot of land for 70,000 and a car for 32,000 on the same day. The value of the plot appreciates uniformly at the rate of 10% every year
while the value of the car depreciates by 20% for the first year and by 10% for the second year. If

Amol sells the plot of land as well as the car after 2 years, what will be the profit or loss on the whole ?

- Watch Video Solution

13. On what sum of money will the difference between the compound interest and simple interest for 3 years be equal to Rs 930, if the rate of interest charged for both is 10% p.a ?

- Watch Video Solution

14. A certain sum of money is invested at a certain fixed rate compounded yearly. If the interest accrued in two years be 44% of the sum borrowed, find the rate of compound interest.

- Watch Video Solution

15. rupees 12,000 is invested for $1 \frac{1}{2}$ years at C.I annually. If Rs 15,972 is received at the end of this period, find the rate of interest per annum.

- Watch Video Solution

16. If $x-\frac{1}{x}=4$, find the value of :
$x+\frac{1}{x}$

- Watch Video Solution

17. If $x-\frac{1}{x}=4$, find the value of :
$x^{2}+\frac{1}{x^{2}}$

- Watch Video Solution

18. If $x-\frac{1}{x}=4$, find the value of :
$x^{4}+\frac{1}{x^{4}}$
19. If $3 a+4 b=9$ and $a b=2$ find the value of : $27 a^{3}+64 b^{3}$

- Watch Video Solution

20. If $x-\frac{1}{x}=y, x \neq 0$, find the value of $\left(x-\frac{1}{x}-2 y\right)^{3}$

- Watch Video Solution

21. The sum of two numbers is 7 and the sum of their cubes is 133 . Find the sum of their squares

- Watch Video Solution

Factors

1. Express each of the following in factors form,
$a^{3}(b-c)^{3}+b^{3}(c-a)^{3}+c^{3}(a-b)^{3}$

- Watch Video Solution

2. Express each of the following in factors form,
$(5 x-3 y)^{3}+(3 y-8 z)^{3}+(8 z-5 x)^{3}$

- Watch Video Solution

3. Simplify :
$\frac{x^{4}-16}{x^{3}+2 x^{2}+4 x+8}$

- Watch Video Solution

4. Factorise:

$a^{3}+a b(1-2 a)-2 b^{2}$
5. Factorise:
$a^{2}-b^{2}-4 a c+4 c^{2}$

D Watch Video Solution
6. Factorise:
$\sqrt{5} x^{2}+2 x-3 \sqrt{5}$

- Watch Video Solution

7. Factorise:

$4(2 a-b+c)^{2}-9(a+b-c)^{2}$

- Watch Video Solution

8. Factorise :
$(x-y)^{3}-8 x^{3}$

- Watch Video Solution

9. Factorise:

$$
(x-2)(x+2)+3
$$

Simutaneous Equations

1. Solve for x and y :

$$
\begin{array}{r}
\mathrm{mx}-\mathrm{ny}=m^{2}+n^{2} \\
x-y=2 n
\end{array}
$$

- Watch Video Solution

2. The sides of an equilateral triangles are given by
$\mathrm{x}+3 \mathrm{y}, 3 \mathrm{x}+2 \mathrm{y}-2$ and $4 x+\frac{1}{2} y+1$
3.6 men and 8 boys can do a piece of work in 7 days, while 8 men and 12 boys do the same work in 5 days.

How long would it take one boy to finish the same work?

- Watch Video Solution

4. A and B have 460 coins altogether. If $\frac{3}{4}$ of A 's number of coins is equal to $\frac{2}{5}$ of B's number of coins, find how many coins must B give to A so that they both have equal number of coins.
5. Rohit went to a bank to withdraw rupes 4,000 . He asked the cashier to give 50 and 100 notes only. Rohit got 50 notes in all. Find how many notes of 50 and 100 he received

- Watch Video Solution

6. Can the following equation hold simultaneusly? If
yes, state the values of x and y

$$
\begin{aligned}
& \frac{x}{2}+\frac{5 y}{3}=12 \\
& 0.7 x-0.3 y=1 \text { and } 1.25 x=4+\frac{y}{6}
\end{aligned}
$$

7. In a two digit number, the sum of the digits is 7. If the number with the order of digits reversed is 28 greater than twice the unit's digit of the original number, find the number.

D Watch Video Solution

8. At a certain time, in a deer park, the number of heads and the number of legs of deer an human visitors were counted and it was found that there
were 41 heads and 136 legs. Find the number of deer and human visitors in the park.

- Watch Video Solution

9. Ten percent of the black balls were added to twenty percent of the white balls and the balls were
10. Three times the number of black balls exceeds the number of white balls by 20 . Find the number of black balls and also, the number of white balls.

- Watch Video Solution

10. A two digit number is obtained by either multiplying the sum of the digits by 8 and subtracting 5 or by multiplying the difference of the digits by 16 and then adding 3 . Find the number.

- Watch Video Solution

11. A shopkeeper sells article A at 8% profit and article B at 10% loss, thereby getting a sum of 1,008 .

If he sells the article A at 10% profit and article B at 8% loss, he would have 1,028 . Find the cost price of article A and B to the shopkeeper.

1. Simplify :
$\left(x^{\frac{1}{3}}-x^{-\frac{1}{3}}\right)\left(x^{\frac{2}{3}}+1+x^{-\frac{2}{3}}\right)$

D Watch Video Solution

2. Solve :
$5^{x}=25 \times 5^{y}$ and $8 \times 2^{y}=4^{x}$

- Watch Video Solution

3. Solve :

$8^{x+1}=16^{y+2}$ and $\left(\frac{1}{2}\right)^{3+x}=\left(\frac{1}{4}\right)^{3 y}$

D Watch Video Solution

4.

Prove that:
$\left(\frac{x^{a}}{x^{b}}\right)^{a^{2+a b+b^{2}}} \times\left(\frac{x^{b}}{x^{c}}\right)^{b^{2+b c+c^{2}}} \times\left(\frac{x^{c}}{x^{a}}\right)^{c^{2+c a+a^{2}}}=1$

- Watch Video Solution

5. If $2^{98}-2^{97}-2^{96}+2^{95}=m \times 2^{95}$, find the value of m.

- Watch Video Solution

6. Find the value of a, ($a \neq$ integer $)$ if:

$$
2^{a-5} \times 6^{2 a-4}=\frac{1}{12^{4} \times 2}
$$

- Watch Video Solution

Logarithm

1. Given $\frac{\log _{10}^{16}}{\log _{10}^{2}}=\log _{10}^{a}$ find the value of $(a+100)$.

- Watch Video Solution

2.

Given

$$
3(\log 5-\log 3)-(\log 5-3 \log 6)=2-\log m
$$

find m.

- Watch Video Solution

3.

$\log x y^{3}=m$ and $\log x^{3} y^{2}=p, \quad$ find $\quad \log \left(x^{2} \div y\right)$
in terms of m and p.

D Watch Video Solution
4. If $3 \log \sqrt{m}+2 \log ^{3} \sqrt{n}=1$. find the value of $m^{9} n^{4}$.

- Watch Video Solution

5.

If
$\log 20 \log 3, b=\log 3-\log 5$ and $c=\log 2.5$ find the value of:
$a+b+c$

- Watch Video Solution

6.

If
$\log 20 \log 3, b=\log 3-\log 5$ and $c=\log 2.5$ find the value of :
15^{a+b+c}

- Watch Video Solution

7. Solve for x :
$3^{\wedge}(\log x)-2^{\wedge}(\log x)=2^{\wedge}(\log x+1)-3^{\wedge}(\log x-1)$

- Watch Video Solution

8. Prove that :

$$
\frac{1}{\log _{a}^{a b c}}+\frac{1}{\log _{b}^{a b c}}+\frac{1}{\log _{c}^{a b c}}=1
$$

- Watch Video Solution

9. Prove that :
$\log _{y}^{x} \cdot \log _{z}^{y} \cdot \log _{a}^{z}=\log _{a}^{x}$

- Watch Video Solution

1. $A B C D$ is a square, X is the mid-point of $A B$ and Y
the mid-point of BC. Prove that the triangles ADX and BAY are congruent.

D Watch Video Solution

2. $A B C D$ is a square, X is the mid-point of $A B$ and Y
the mid-point of $B C$. Prove that
$\angle D X A=\angle A Y B$

- Watch Video Solution

3. $A B C D$ is a square, X is the mid-point of $A B$ and Y
the mid-point of $B C$. Prove that
DX is perpendicular to AY.

- Watch Video Solution

4. The sides $P Q, P R$ of triangle $P Q R$ are equal, and S,

T are points on PR, PQ such that
$\angle P S Q$ and $\angle P T R$ are right angles
Prove that the triangles PTR and PSQ are congruent.
5. The sides $P Q, P R$ of triangle $P Q R$ are equal, and S,

T are points on PR, PQ such that
$\angle P S Q$ and $\angle P T R$ are right angles
If $O S$ and RT intersect at M, prove that the triangles
PTM and PSM are congruent.

D Watch Video Solution

6. $A B C D$ is a square. P, Q and Rare the points on $A B$, $B C$ and $C D$ respectively, such that $A P=B Q=C R$. Prove that:
$P B=Q C$
7. $A B C D$ is a square. P, Q and Rare the points on $A B$, $B C$ and $C D$ respectively, such that $A P=B Q=C R$. Prove that:
$P Q=Q R$

- Watch Video Solution

8. $A B C D$ is a square. P, Q and Rare the points on $A B$, $B C$ and $C D$ respectively, such that $A P=B Q=C R$. Prove that:

If angle $P Q R$ is a rt. Angle find angle $P R Q$
9. $A B C$ and $D B C$ are two isosceles triangles on the same bas $B C$ and vertices A and D are on the same side of $B C$. If $A D$ is extended to intersect $B C$ at P, show that $A B D \cong A C D$
$A B P \cong A C P$

D Watch Video Solution

10. Triangles $A B C$ and $D B C$ are two isosceles triangles on the same base $B C$ and their vertices A and D are on the same side of $B C$. If $A D$ is extended
to intersect $B C$ at P, show that:

$\triangle A B P \cong \triangle A C P$

- Watch Video Solution

11. Triangles $A B C$ and $D B C$ are two isosceles triangles on the same base $B C$ and their vertices A and D are on the same side of $B C$. If $A D$ is extended to intersect $B C$ at P, show that:
$A P$ bisects angle BAC and BDC.
12. $A B C$ and $D B C$ are two isosceles triangles on the same bas $B C$ and vertices A and D are on the same side of $B C$. If $A D$ is extended to intersect $B C$ at P, show that $A P$ bisects $\angle A$ as well as
$\angle D$ and $A P$ is the perpendicular bisector of $B C$

- Watch Video Solution

13. In a right triangle $A B C$, right angled at C, P is the mid-point of hypotenuse $A B . C$ is joined to P and produced to a point D, such that $D P=C P$. Point D is joined to point B. Show that:
$\triangle A P C \cong \triangle B P D$
14. In a right triangle $A B C$, right angled at C, P is the mid-point of hypotenuse $A B . C$ is joined to P and produced to a point D, such that $D P=C P$. Point D is joined to point B. Show that:

Angle DBC is a right angle.

- Watch Video Solution

15. In a right triangle $A B C$, right angled at C, P is the mid-point of hypotenuse $A B . C$ is joined to P and produced to a point D, such that $D P=C P$. Point D is
joined to point B. Show that:

$\Delta D B C \cong \triangle A C B$

- Watch Video Solution

16. In a right triangle $A B C$, right angled at C, P is the mid-point of hypotenuse $A B . C$ is joined to P and produced to a point D, such that $D P=C P$. Point D is joined to point B. Show that:
$C P=\frac{1}{2} A B$

- Watch Video Solution

17. In the given figures, $A B C D$ is a rectangle Prove that : $\triangle A B E \cong \triangle C D F$.

D Watch Video Solution

18. In quadrilateral $P Q R S$, $P S=Q R$ and
$\angle S P Q=\angle R Q P$. Prove that:

$P R=Q S$

- Watch Video Solution

19. In quadrilateral $P Q R S$, $P S=Q R$ and
$\angle S P Q=\angle R Q P$. Prove that :
$\angle Q P R=\angle P Q S$

- Watch Video Solution

Isosceles Triangles

1. In $\triangle A B C, A B=A C$ and D is a point an side
$A C$ such that $A D=B D=B C$. Show that :
$\angle A D B=108^{\circ}$

- Watch Video Solution

2. In the following figure, $A B=B C, A D$
$\perp B C$ and $C E \perp A B$. prove that $\mathrm{AD}=\mathrm{CE}$

- Watch Video Solution

Inequalities

1. In triangle $A B C$, the internal bisector of
$\angle A \angle B$ and $\angle C$ meet at point I. Prove that:
$\frac{1}{2}(A B+B C+C A)<A I+B I+C I$

- Watch Video Solution

2. In triangle $\mathrm{ABC}, A B>A C$ and D is a point in side BC . Show that : $A B>A D$.

- Watch Video Solution

3. The P lies on side $A B$ of an equilateral triangle
$A B C$. Arrange $A C, A P$ and $C P$ in descending order.
4. In triangle $A B C$, side $A C$ is greater than side $A B$. If the internal bisector of angle A meets the opposite side at point D , prove that: $\angle A D C$ is greater than $\angle A D B$.

- Watch Video Solution

5. In a triangle $A B C$, side $A C$ is greater than side $A B$ and point D lies on side $B C$ such that $A D$ bisects angle BAC. Show that:
$\angle A D B$ is acute.
6. O is any point in the interior of a triangle $A B C$.

Prove that :

$O B+O C<A B+A C$.

width="60\%">

- Watch Video Solution

7. The given figure shows an equilateral triangles
$A B C$ and D is point in $A C$.

Prove that :

(i) $A D<B D$
(ii) $B C>B D$

- Watch Video Solution

Mid Point Theorem

1. In the figure, given below. $A B C D$ is a trapezium in which $A B / D C, P$ is mid- point of $A D$ and Q is midpoint of BC.

Write a relations connecting $A B, P Q$ and $D C$.
(ii) Find $D C$. If $A B=16 \mathrm{~cm}$ and $P Q=23 \mathrm{~cm}$

- Watch Video Solution

2. In the figure, given below X and Y are the midpoints of $A B$ and $A C$ respectively. Given that $B C=6$ $\mathrm{cm}, \mathrm{AB}=5-4 \mathrm{~cm}$ and $\mathrm{AC}=5-0 \mathrm{~cm}$, calculate the perimeter of trapezium YXBC.

- Watch Video Solution

3. In triangle $A B C, D$ is a point in side $A B$ such that $A B=4 A D$ and E is a point in $A C$ such that $A C=4 A E$.

Show that $B C$: $D E=4: 1$

- Watch Video Solution

4. In triangle $A B C, D$ and E are mid-points of sides
$A B$ and $B C$ respectively. Also, F is a point in side $A C$ so that DF is parallel to $B C$
(i) Prove that DBEF is a parallelogram.

- Watch Video Solution

5. In triangle $A B C, D$ and E are mid-points of sides $A B$ and $B C$ respectively. Also, F is a point in side $A C$ so that DF is parallel to BC

Find the perimeter of parallelogram DBEF, if $A B=10$ $\mathrm{cm}, \mathrm{BC}=8.4 \mathrm{~cm}$ and $\mathrm{AC}=12 \mathrm{~cm}$.

D Watch Video Solution

6. M and N divide the side $A B$ of a triangle $A B C$ into
three equal parts. Through M and N , lines are drawn parallel to $B C$ and intersecting $A C$ at points P and Q respectively. Prove that P and Q divide $A C$ into three equal parts.
7. In parallelogram $A B C D, E$ is mid-point of $C D$ and through D, a line is drawr parallel to $E B$ to meet $C B$ produced at point G and to cut $A B$ at point F. Prove that:
$2 \times A D=G C$

- Watch Video Solution

8. In parallelogram $A B C D, E$ is mid-point of $C D$ and through D, a line is drawn parallel to $E B$ to meet $C B$ produced at point G and to cut $A B$ at point F. Prove
that :
$D G=2 E B$

- Watch Video Solution

9. The given figure shows a quadrilateral $A B C D$ in which E, F, G and H are the midpoints of consecutive sides of $A B C D$. Again P, Q, R and S are the mid-points of the consecutive sides of quadrilateral EFGH. If

EFGH is a rectangle, show that : PQRS is a rhombus.

Pythagoras Theorem

1. In the given figure,
$A B=A C, \angle A=\angle D=90^{\circ}$
$B D=18 \mathrm{~cm}$ and $D C=24 \mathrm{~cm}$.

Calculate the length of $A B$ correct to two places of decimal. Also . Find the perimeter of quadrilateral

ABDC.

- Watch Video Solution

2. The following figures shows a triangle $A B C$ in which AD is median and $A E \perp B C$.

Prove that : $2 A B^{2}+2 A C^{2}=4 A D^{2}+B C^{2}$

- Watch Video Solution

3. In triangles $A B C, A D$ is perpendicular to $B C$ and
$A D^{2}=B D \times D C$. Prove that angle $B A C=90^{\circ}$
4.

$\angle A B C-90^{\circ}, A B=2 a+1$ and $B C=2 a^{2}+2 a$.

Find $A C$ in terms of ' a ' if $a=8$, find the lengths of the sides of the triangles.

- Watch Video Solution

5. In a right angled triangle, five times the square on the hypotenuse is equal to four times the sum of the squares on the medians drawn from the acute angles. Prove it.

1. In parallelogram $A B C D, A B=(3 x-4) c m, B C=(y-1)$

$\mathrm{cm}, C D=(y+5) c m$ and $A D=(2 x+5) c m$. find the ratio $A B: B C$.

Find the values of x and y.

- Watch Video Solution

2. Alternate sides of a hexagon are produced to
meet so as to form a star-shaped figure. Show that the sum of a angles at vertices of the star is equal to 4-right angles.

- Watch Video Solution

3. Find the numbers of sides of a polygon whose number of diagonals is

5

- Watch Video Solution

4. Find the numbers of sides of a polygon whose number of diagonals is

14
5. Find the numbers of sides of a polygon whose number of diagonals is

27

- Watch Video Solution

6. Each interior angle of a regular plygon is 144°.

Find the interior angle of a regular polygon which has double the number of sides as the first polygon.

- Watch Video Solution

1. In a octagon, four of the angles are equal and each of the others is 20° more than each of the first four. Find the angles of the octagon.

- Watch Video Solution

2. Construct a quadrilateral $A B C D$ in which $A B=4.5$
$\mathrm{cm} \quad, \quad \mathrm{BC}=\quad 3.8$
$\angle B C D=90^{\circ} \angle B A D=60^{\circ}$ and $\angle A B C=120^{\circ}$

- Watch Video Solution

3. Contruct a rhombus $A B C D$ in which $A B=4.7 \mathrm{~cm}$

 and $A C=6.2 \mathrm{~cm}$.
- Watch Video Solution

4. Construct a parallelogram $A B C D$ in which $A C=6.5$
$\mathrm{cm}, \mathrm{BD}=7 \mathrm{~cm}$, diagonals $A C$ and $B D$ intersects each other at angle 45°

- Watch Video Solution

1. In quadrilateral $A B C D$, diagonal $B D$ is bisected by the diagonal AC. Prove that : $\triangle A B C$ and $\triangle A D C$ are equal in area.

- Watch Video Solution

2. In $\triangle A B C$, E is mid-point of side AB and EBCD is a parallelogram. If the area of $\triangle A B C$ is 80 cm , find the area of parallelogram EBCD.

- Watch Video Solution

3. In the following figure, F and E are points on the side $A D$ of the triangle $A B D$. Through F a line is drawn parallel to $A B$ to meet $B D$ at point C.

Prove that: $\operatorname{ar}(\triangle A C E)=\operatorname{ar}$ (quad. BCEF)

D Watch Video Solution

4. Any point D is taken on the side BC of a $\triangle A B C$ and $A D$ is produced to E such that $A D=D E$, prove that area of $\triangle B C E=$ area of $\triangle A B C$,

D Watch Video Solution

5. $A B C$ is an equilateral triangle. Taking $B C$ as the
base, construct a right angled triangle equal in area to equilateral triangle $A B C$.

- Watch Video Solution

1. If arcs $A X B$ and CYD of a circle are congruent, find

 the ratio of $A B$ and $C D$.
- Watch Video Solution

2. In a circle of radius $5 \mathrm{~cm}, \mathrm{PQ}$ and RS are two parallel chords of lengths 8 cm and 6 cm respectively. Calculate the distance between the chords if they are on:
the same side of the centre.

- Watch Video Solution

3. In a circle of radius $5 \mathrm{~cm}, \mathrm{PQ}$ and RS are two parallel chords of lengths 8 cm and 6 cm respectively. Calculate the distance between the chords if they are on:
opposite sides of the centre.

- Watch Video Solution

4. $A B$ and $C D$ are two chords such that $A B=10 \mathrm{~cm}$,
$C D=24 \mathrm{~cm}$ and $A B / / C D$ The distance between the
chords is 17 cm . Find the radius of the circle.
5. In circle given below. O is its centre and lengths of chords $A B$ and $C D$ are in the ratio $5: 3$

If angle $A O B=100^{\circ}$, find :
(i) $\angle C O D$

- Watch Video Solution

6. A chord CD of a circle, with centre o, is bisected by the diameter $A B$ at point P. If $O A=O B=30 \mathrm{~cm}$ and $\mathrm{OP}=18 \mathrm{~cm}$, calcualte :
(\#\#SEL_RKB_ICSE_MAT_IX_CR_03_E01_128_Q01.png" width="80\%">

D View Text Solution

7. If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.

Statistics

1. Construct a cumulative frequency distribution table from the following frequency table :

C.I	Frequency
$11-20$	15
$21-30$	21
$31-40$	26
$41-50$	18
$51-60$	13
$61-70$	15

2. Construct a frequency distributions table from the following cumulatvive frequency table.
Class interval
Cumulative Frequency

0-9
15
10-19
23
20-29
38
$30-39$
56
$40-49$
68
$50-59$
90

- Watch Video Solution

3. Determine whether the given values of x are zeroes of the given polynomial or not: $x^{2}+6 x+5 ; x=-1, x=-5$
4. If $x \tan 45^{\circ} \sin 30^{\circ}=\cos 30^{\circ} \tan 30^{\circ}$, then x is equal to
A. $\sqrt{3}$
B. $\frac{\sqrt{3}}{2}$
C. 0
D. 1

Answer:

5. $\sin 2 B=2 \sin B$ is true when B is equal to

A. 90°
B. 60°
C. 45°
D. 0°

Answer:

- Watch Video Solution

Mean And Median

1. Find the mean of the following numbers.

16141282326

18202391122
2718 and 20

State the value of the mean when each of these numbers is :
(i) increased by 4.
(ii) decreased by 6 .

- Watch Video Solution

2. Find the median of :

14208172527

2016250519

1730 and 6

- Watch Video Solution

3. The mean weigth of 30 students of a class is 60.2 kg . Two students of weights of 50 kg and 67 kg left the class. Find the mean weight of the remaining students

- Watch Video Solution

4. Find the mean and median of first 10 multiple of 3 between 0 and 60.

- Watch Video Solution

Area And Perimeter Of Plane Figures

1. The sides of right-angled triangle containing the right angle are 5 xcm and $(3 x-1) \mathrm{cm}$. Calculate the lengths of the hypotenuse of the triangle. If its area is $60 \mathrm{~cm}^{2}$
2. The perimeter of an isosceles triangle is 40 cm .

The base is two-third of the sum of equal sides. Find the length of each equal side.

D Watch Video Solution

3. The following figures shows a right - angled triangle ABC with $\angle B=90^{\circ}, A B=15 \mathrm{~cm}$ and AC
$=25 \mathrm{~cm}$. D is a point in side BC and $C D=7 \mathrm{~cm}$. if De
$\perp A C$, find the length of $D E$.
4. The parallel sides of an isosceles trapezium are in the ratio $2: 3$. If its height is 8 cm and area is 240 cm^{2} find its perimeter.

- Watch Video Solution

5. Find the area (correct to three significant digits)
of quadrilateral $A B C D$ with angle $B C A=90^{\circ}, A B=26$
cm and ACD as an equilateral triangle of side 24 cm .

- Watch Video Solution

6. The lengths of the diagonals of a rhombus are 60 cm and 80 cm . Find the perpendicular distance between the opposite sides of rhombus.

- Watch Video Solution

7. The base and the altitude of triangular metal disc are 66 cm and 28 cm respectively. By drilling a circular hole through this metal disc, its area is reduced to one-third. Find the diameter of the hole.
(Take only one side of the disc into consideration)

- Watch Video Solution

8. Three concentric circles have radii $x \mathrm{~cm}, 10 \mathrm{~cm}$ and

5 cm such that $x>10>5$. If the area enclosed by
circles with radii xcm and 10 cm is the same as the area enclosed by the circles with radii 10 cm and 5
cm , find the area of the largest circle.

- Watch Video Solution

9. Find the area and the perimeter of the shaded part of following figure.
(i)

(ii)

- Watch Video Solution

Solids

1. The sum of the length, breadth and height of a
cuboid is 38 cm and the length of its diagonal is 22
cm . Find the surface area of the cuboid.
2. A wall 24 m long, 5 m high and $0-25 \mathrm{~m}$ thick is to be constructed using bricks each measuring $25 \mathrm{~cm} \times 12.5 \mathrm{~cm} \times 7.5 \mathrm{~cm}$. Find the number of bricks required, if 5% of the wall is occupied by cement and sand mixture.

- Watch Video Solution

3. The internal dimensions of a box are 1.2 m .80 cm and 50 cm . How many cubes each of edge 7 cm can
be packed in the box with faces parallel to the sides of the box. Also, find the space left empty in the box.

- Watch Video Solution

4. The internal dimensions of a box are 1.2 m 80 cm and 50 cm . How many cubes each of edge 7 cm can be packed in the box with faces parallel to the sides of the box.

D Watch Video Solution

5. A small indoor greenhouse (herbarium) is made entirely of glass panes (including base) held together with tape. It is 30 cm long, 25 cm wide and 25 cm high. (i) What is the area of the glass? How much of tape is needed for all the 12 edges?

- Watch Video Solution

6. A river 3 m deep and 40 m wide is flowing at the
rate of 2 km per hour. How much water will fall into the sea in a minute?
7. In
$\triangle A B C, \angle C=90^{\circ}, A B=20$ and $B C=12 . D$ is a point in side $A C$ such that $C D=9$ Taking angle BDC
$=x$, find
$\sin \angle A B C$

- Watch Video Solution

2.

$\triangle A B C, \angle C=90^{\circ}, A B=20$ and $B C=12 . D$ is a point in side $A C$ such that $C D=9$ Taking angle BDC
$=x$, find
$\tan x-\cos x+3 \sin x$.

- Watch Video Solution

3. If $\cos \theta=\frac{2 \sqrt{m n}}{m+n}$, find the value of $\sin \theta$ (given $\mathrm{m}>\mathrm{n}$)

D Watch Video Solution

4.

In
triangle
ABC
$\angle B=90^{\circ}, A B=40, A C+B C=80$, Find :
$\sin A$

Watch Video Solution

5.

In
triangle
ABC
$\angle B=90^{\circ}, A B=40, A C+B C=80$, Find :
$\cos A$

- Watch Video Solution

6. In triangle
ABC
$\angle B=90^{\circ}, A B=40, A C+B C=80$, Find : $\tan \mathrm{C}$.
7. If $A=30^{\circ}$ then show that $\sin \left(60^{\circ}+A\right)-\sin \left(60^{\circ}-A\right)=\sin A$

- Watch Video Solution

8. If $A=30^{\circ}$ then show that
$\sin \left(A+30^{\circ}\right)+\cos \left(A+60^{\circ}\right)=\cos A$

- Watch Video Solution

9. If $\mathrm{x}=20^{\circ}$ Evaluate :
$12 \sin \frac{3 x}{2} \cos 3 x+5 \tan \left(2 x+5^{\circ}\right)-3 \cot ^{2} 3 x$.
10. If $\cot 3 x=\sin 45^{\circ} \cos 45^{\circ}+\cos 60^{\circ}$, find the value of x between 0° and 90°

- Watch Video Solution

11. If $2 \cos ^{2} \theta+\sin \theta-2=0$ and $0^{\circ} \leq \theta \leq 90^{\circ}$
find the value of θ.

- Watch Video Solution

12. In $\triangle A B C, \angle B=90^{\circ}$ find the values of: $\sin A \cos C+\cos A \sin C$

- Watch Video Solution

13. In $\triangle A B C, \angle B=90^{\circ}$ find the values of:
$\cos A \cos C-\sin A \sin C$

- Watch Video Solution

14. In an isosceles triangle $A B C$.
$A B=B C=10 \mathrm{~cm}$ and $B C=18 \mathrm{~cm}$.

Find the value of :
$\sin ^{2} B+\cos ^{2} C$

- Watch Video Solution

15. In an isosceles triangle $A B C$.
$A B=B C=10 \mathrm{~cm}$ and $B C=18 \mathrm{~cm}$.
Find the value of :
$\tan ^{2} C-\sec ^{2} B+2$

- Watch Video Solution

16. In Triangle $A B C, A D$ is perpendicular to $B C$, $\tan B=\frac{3}{4} \tan C=\frac{5}{12}$ and $\mathrm{BC}=56 \mathrm{~cm}$. Calculate the lengths of AD.

- Watch Video Solution

17. A balloon is connected to a meteorological station by a cable of length 200 m inclined to the horizontal at an angle of 60°. Determine the height of the balloon from the ground. Assume that there is no slack in a cable. [Take $\sqrt{3}=1.73$).
18. $A B C D$ is an isosceles trapezium with $A B$ parallel
to
DC,
AD
$=\quad B C$
$=\quad 12$
cm,
$\angle A=60^{\circ}$ and $D C=16 \mathrm{~cm}$. Taking $\sqrt{3}=1.732$,
find
length of side $A B$.

- Watch Video Solution

19. $A B C D$ is an isosceles trapezium with $A B$ parallel

$$
\text { to } D C, A D=B C=12 \mathrm{~cm} \text {, }
$$

$\angle A=60^{\circ}$ and $D C=16 \mathrm{~cm}$. Taking $\sqrt{3}=1.732$,
find
area of trapezium $A B C D$.
20. If A, B, C are angles of a triangle, prove that
$\tan \frac{B+C}{2}=\cot \frac{A}{2}$.

- Watch Video Solution

21. If $A+B=90^{\circ}$, show that:
$\cos A=\sqrt{\frac{\cos A}{\sin B}-\sin A \cos B}$
22. Prove that :
$\tan \left(55^{\circ}+x\right)=\cot \left(35^{\circ}-x\right)$

- Watch Video Solution

23. Prove that:
$\sec \left(70^{\circ}-0\right)=\operatorname{cosec}\left(20^{\circ}+0\right)$

- Watch Video Solution

24. Prove that :
$\sin \left(28^{\circ}+A\right)=\cos \left(62^{\circ}-A\right)$
25.

Prove
$\sin \theta \cos \left(90^{\circ}-\theta\right) \cos \theta \quad \cos \theta \sin \left(90^{\circ}-\theta\right) \sin \theta$
$\sin \left(90^{\circ}-\theta\right)+\frac{\cos \left(90^{0}-\theta\right)}{}$

- Watch Video Solution

26. If $\tan 2 \theta=\cot \left(\theta+6^{\circ}\right)$, where 2θ and $\theta+6^{\circ}$ are acute angles, find the value of θ.
27. If in $\triangle A B C, \angle C=90^{\circ}$, prove that:
$\sqrt{\frac{1-\sin A}{1+\cos B}}=\sec A-\cot B$

- Watch Video Solution

28. Solve for $\theta\left(0^{\circ}<\theta<90^{\circ}\right)$
$2 \sin ^{2} \theta=\frac{1}{2}$

- Watch Video Solution

29. Solve for $\theta\left(0^{\circ}<\theta<90^{\circ}\right)$
$2 \cos 3 \theta=1$
30. If $\operatorname{cosec} \theta=\sqrt{2}$, find the value of :
$\frac{1}{\tan A}+\frac{\sin A}{1+\cos A}$

- Watch Video Solution

31. If $2 \cos \theta=\sqrt{3}$. prove that :
$3 \sin \theta-4 \sin ^{3} \theta=1$

- Watch Video Solution

32. Given A is an acute angle and
$13 \sin A=5$, evaluate :
$5 \sin A-2 \cos A$
$\tan A$

- Watch Video Solution

33. Prove that $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$

- Watch Video Solution

34. If $\sin \theta=\cos \theta$ find the value of :
$3 \tan ^{2} \theta+2 \sin ^{2} \theta-1$

Watch Video Solution

35. IF $\cos B=\frac{3}{\sqrt{13}}$ and $A+B=90^{\circ}$ find the value of $\sin A$.

- Watch Video Solution

36. Two opposite angles of a rhombus are 60° each.

If the length of each side of the rhombus is 8 cm ,
find the lengths of the diagonals of the rhombus.

- Watch Video Solution

Co Ordinate Geometry

1. Three vertices of a parallelogram $A B C D$ are $A=(-2$,
$2), B=(6,2)$ and $C=(4 .-3)$. Plot these points on a graph paper and hence use it to find the co ordinates of the fourth vertex D. Also, find the coordinates of the mid point of the side CD.

- Watch Video Solution

2. The given figure shows an equilateral triangle OAB.

If $A B=2 a$ units, find the co-ordinates of the vetices.

- Watch Video Solution

3. Show that the lines $y=-x$ bisects the angle $X^{\prime} O Y$

- Watch Video Solution

4. Draw the line $\frac{x}{3}+\frac{y}{4}=1$

D Watch Video Solution

5. Find the slope and the y-intercept of the line: $\frac{x}{3}-\frac{y}{5}=1$

- Watch Video Solution

6. Find the slope and the y-intercept of the line:
$\frac{2 x}{5}+\frac{3 y}{4}=1$

- Watch Video Solution

1. Solve graphically:
$3 y+5 x=0$ and $5 y+2 x=0$

- Watch Video Solution

2. Solve graphically:
$2 x+2 y-3=0$ and $x+2 y+1=0$

D Watch Video Solution
3. Draw the graph of $2 x-3 y+6=0$. Hence, find the
co-ordinates of points where the graph drawn
meets the co-ordinate axes.

- Watch Video Solution

Distance Formula

1. Find distance between the points $A(a, b)$ and $B(-$
b,a)

- Watch Video Solution

2. Find the distance between the origin and $(3 \sqrt{5},-2)$

- Watch Video Solution

3. Show that the quadrilateral $A B C D$ with $A(3,1)$ $, B(0,-2), C(1,1)$ and $D(4,4)$ parallelogram.

- Watch Video Solution

4. Find the distance between the points ($-2,-2$) and
$(1,0)$ correct to 3 significant figures.

- Watch Video Solution

5. The circle with centre (x, y) passes through the points (3,11), $(14,0)$ and (12,8). Find the values of x and y.

- Watch Video Solution

6. $A B$ is a diameter of a circle with centre $C=(-2,5)$. If
$A=(3,-7)$. Find
the length of radius AC
7. $A B$ is a diameter of a circle with centre $C=(-2,5)$. If
$A=(3,-7)$. Find
the coordinates of B.

D Watch Video Solution

8. Find all possible values of a for which the distance between the points $\mathrm{A}(\mathrm{a},-1)$ and $\mathrm{B}(5,3)$ is 5 unit.
9. Find the point on x-axis which is equidistant from the points $(-2,5)$ and $(2,-3)$.

- Watch Video Solution

10. Show that the points $(1,-1),(5,2)$ and 99,5$)$ are collinear.

D Watch Video Solution

11. Show that the points $A(2,1), B(5,2) . C(6,4)$ and $D(3,3)$ are vertices of a parallelogram. Is this figure
a rectangle?

- Watch Video Solution

