©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - ICSE

CIRCLE

Example

1. In the figure, given alongside, $C D$ is a diameter which meets the chord $A B$ at E, such
that $A E=B E=4 \mathrm{~cm}$. If $C E$ is 3 cm , find the radius of the circle.

D Watch Video Solution

2. एक आयत की लम्बाई $x, 5 \mathrm{~cm} / \mathrm{min}$ की दर से घट रही

है और चौड़ाई $\mathrm{y}, 4 \mathrm{~cm} / \mathrm{min}$ कि दर से बढ़ रही है जब $\mathrm{x}=8 \mathrm{~cm}$ और $\mathrm{y}=6 \mathrm{~cm}$ है तब आयत के (a) परिमाप

क्षेत्रफल की परिवर्तन की दर ज्ञात कीजिए

- Watch Video Solution

3. Chords $A B$ and $C D$ of a circle are parallel to
each other and lie on opposite sides of the centre of the circle. If $A B=36 \mathrm{~cm}, C D=48 \mathrm{~cm}$ and the distance between the chords is 42 cm , find the radius of the circle.

- Watch Video Solution

4. Chords $A B$ and $C D$ of a circle with centre O, intersect at a point E. If OE bisects angle AED, prove that chord $\mathrm{AB}=$ chord CD .
5. $B C$ is an equilateral triangle. A circle is drawn with centre A so that it cuts $A B$ and $A C$ at points M and N respectively. Prove that $B N=$ CM

- Watch Video Solution

6. Prove that the line joining the mid-points of two parallel chords of a circle passes through the centre.
7. $A B$ and $C D$ are two equal chords of a circle with centre O. If $A B$ and $C D$, on being produced, meet at a point P outside the circle, prove that:
$P A=P C$
8. $A B$ and $C D$ are two equal chords of a circle with centre O. If $A B$ and $C D$, on being produced, meet at a point P outside the circle, prove that:

$$
P B=P D
$$

- Watch Video Solution

9. Two circles with centres A and B intersect
each other at points P and Q. Prove that the centre-line $A B$ bisects the common chord $P Q$ perpendicularly.

- Watch Video Solution

10. Two circles with centres O and O ' intersect each other at points P and Q. The straight line

APB is parallel to centre-line $0 O^{\prime}$. Prove that :
$\mathrm{OO}^{\prime}=\frac{1}{2} \mathrm{AB}$

- Watch Video Solution

11. Out of two unequal chords of a circle, the bigger chord is closer to the centre of the circle. Prove it.

D Watch Video Solution
12. Three boys A, B and C are standing on the circumference of a circle with radius 10 cm and centre at point O. If the distance between A
and $B=$ distance between B and $C=12 \mathrm{~cm}$, find
the distance between A and C .

D Watch Video Solution

13. In the given figure, O is the centre of a circle, $A B$ is a side of regular octagon and $A C$ is
a side of regular hexagon. Find :

$\angle A O B$

D Watch Video Solution
14. In the given figure, O is the centre of a circle, $A B$ is a side of regular octagon and $A C$ is a side of regular hexagon. Find :
$\angle A O C$

D Watch Video Solution

15. In the given figure, O is the centre of a circle, $A B$ is a side of regular octagon and $A C$ is a side of regular hexagon. Find :

$\angle B O C$.

(Watch Video Solution

Exercise 17 A

1. A chord of length 6 cm is drawn in a circle of radius 5 cm . Calculate its distance from the centre of the circle.

D Watch Video Solution

2. A chord of length 8 cm is drawn at a distance of 3 cm from the centre of a circle.

Calculate the radius of the circle.

D Watch Video Solution

3. The radius of a circle is $17-0 \mathrm{~cm}$ and the length of perpendicular drawn from its centre to a chord is 80 cm . Calculate the length of the chord.

D Watch Video Solution

4. A chord of length 24 cm is at a distance of 5
cm from the centre of the circle. Find the length of the chord of the same circle which is at a distance of 12 cm from the centre.
5. In the following figure, $A D$ is a straight line.
$O P \perp A D$ and O is the centre of both the circles. If $\mathrm{OA}=34 \mathrm{~cm}, \mathrm{OB}=20 \mathrm{~cm}$ and $\mathrm{OP}=16$ cm , find the length of $A B$.

D
6. In a circle of radius 17 cm , two parallel chords of lengths 30 cm and 16 cm are drawn.

Find the distance between the chords, if both the chords are :
on the opposite sides of the centre,

D Watch Video Solution

7. In a circle of radius 17 cm , two parallel
chords of lengths 30 cm and 16 cm are drawn.

Find the distance between the chords, if both
the chords are :
on the same side of the centre

D Watch Video Solution
8. Two parallel chords are drawn in a circle of diameter 30.0 cm . The length of one chord is 24.0 cm and the distance between the two chords is 21.0 cm , find the length of the other chord.
9. A chord CD of a circle, whose centre is 0 , is bisected at P by a diameter AB .

Given $O A=O B=15 \mathrm{~cm}$ and $O P=9 \mathrm{~cm}$.
Calculate the lengths of :
CD

- Watch Video Solution

10. A chord CD of a circle, whose centre is O, is
bisected at P by a diameter AB .

Given $\mathrm{OA}=\mathrm{OB}=15 \mathrm{~cm}$ and $\mathrm{OP}=9 \mathrm{~cm}$. Calculate
the lengths of:

AD

D Watch Video Solution

11. A chord CD of a circle, whose centre is O, is bisected at P by a diameter AB .

Given $\mathrm{OA}=\mathrm{OB}=15 \mathrm{~cm}$ and $\mathrm{OP}=9 \mathrm{~cm}$. Calculate the lengths of :

CB.

- Watch Video Solution

12. The figure, given below, shows a circle with centre O in which diameter $A B$ bisects the chord $C D$ at point E. If $C E=E D=8 \mathrm{~cm}$ and $E B=$

4 cm , find the radius of the circle.

D Watch Video Solution

13. In the given figure, O is the centre of the circle. $A B$ and $C D$ are two chords of the circle.
$O M$ is perpendicular to $A B$ and $O N$ is
perpendicular to $C D . A B=24 \mathrm{~cm}, O M=5 \mathrm{~cm}$, $\mathrm{ON}=12 \mathrm{~cm}$. Find the :
radius of the circle

- Watch Video Solution

14. In the given figure, O is the centre of the circle. $A B$ and $C D$ are two chords of the circle.
$O M$ is perpendicular to $A B$ and $O N$ is perpendicular to $C D . A B=24 \mathrm{~cm}, O M=5 \mathrm{~cm}$,
$\mathrm{ON}=12 \mathrm{~cm}$. Find the :

radius of the circle

D Watch Video Solution

Exercise 17 B

1. The figure shows two concentric circles and
$A D$ is a chord of larger circle.

Prove that: $A B=C D$.

- Watch Video Solution

2. A straight line is drawn cutting two equal
circles and passing through the mid-point M of the line joining their centres O and O^{\prime}.

Prove that the chords $A B$ and $C D$, which are intercepted by the two circles, are equal.

D Watch Video Solution
3. M and N are the mid-points of two equal
chords $A B$ and $C D$ respectively of a circle with
centre O. Prove that:

(i) $\angle B M N=\angle D N M$

D Watch Video Solution

4. M and N are the mid-points of two equal chords $A B$ and $C D$ respectively of a circle with
centre O. Prove that :

$\angle A M N=\angle C N M$.

D Watch Video Solution
5. In the following figure, P and Q are the points of intersection of two circles with centres O and O^{\prime}. If straight lines APB and CQD are parallel to OO^{\prime}, prove that

$\mathrm{OO}^{\prime}=\frac{1}{2} A B=\frac{1}{2} C D$

- Watch Video Solution

6. In the following figure, P and Q are the points of intersection of two circles with centres O and O^{\prime}. If straight lines APB and CQD are parallel to OO', prove that
$A B=C D$

D Watch Video Solution

7. Two equal chords $A B$ and $C D$ of a circle with
centre O, intersect each other at point P inside
the circle. Prove that
$A P=C P$

D Watch Video Solution

8. Two equal chords $A B$ and $C D$ of a circle with
centre O, intersect each other at point P inside
the circle. Prove that
$B P=D P$

D Watch Video Solution
9. In the following figure, OABC is a square. A circle is drawn with O as centre which meets $O C$ at P and $O A$ at Q. Prove that :
$\triangle O P A=\triangle O Q C$,

- Watch Video Solution

10. In the following figure, $O A B C$ is a square. A circle is drawn with O as centre which meets
$O C$ at P and $O A$ at Q. Prove that :

$\triangle B P C=\triangle B Q A$.

- Watch Video Solution

11. The length of common chord of two intersecting circles is 30 cm . If the diameters of these two circles be 50 cm and 34 cm , calculate the distance between their centres.

- Watch Video Solution

12. The line joining the mid-points of two chords of a circle passes through its centre.

Prove that the chords are parallel.

D Watch Video Solution

13. In the following figure, the line $A B C D$ is perpendicular to $P Q$, where P and Q are the centres of the circles. Show that :
$A B=C D$
14. In the following figure, the line $A B C D$ is perpendicular to PQ , where P and Q are the centres of the circles. Show that :
$A C=B D$

D Watch Video Solution
15. $A B$ and $C D$ are two equal chords of a circle with centre O which intersect each other at right angle at point P. If $O M \perp A B$ and $O N$ \perp CD, show that OMPN is a square.

- Watch Video Solution

Exercise 17 C

1. In the given figure, an equilateral triangle
$A B C$ is inscribed in a circle with centre O. Find :
$\angle B O C$

- Watch Video Solution

2. In the given figure, an equilateral triangle $A B C$ is inscribed in a circle with centre O. Find :
$\angle O B C$

- Watch Video Solution

3. In the given figure, a square is inscribed in a circle with centre O. Find :
$\angle B O C$. Is BD a diameter of the circle

- Watch Video Solution

4. In the given figure, a square is inscribed in a circle with centre O. Find :
$\angle O C B$. Is BD a diameter of the circle

- Watch Video Solution

5. In the given figure, a square is inscribed in a circle with centre O. Find :
$\angle C O D$. Is BD a diameter of the circle

D Watch Video Solution

6. In the given figure, a square is inscribed in a circle with centre O. Find :
$\angle B O D$.Is BD a diameter of the circle

D Watch Video Solution

7. In the given figure, $A B$ is a side of regular pentagon and $B C$ is a side of regula hexagon.

$\angle A O B$

- Watch Video Solution

8. In the given figure, $A B$ is a side of regular pentagon and $B C$ is a side of regula hexagon.

$\angle B O C$

- Watch Video Solution

9. In the given figure, $A B$ is a side of regular pentagon and $B C$ is a side of regular hexagon.
$\angle A O C$

- Watch Video Solution

10. In the given figure, $A B$ is a side of regular pentagon and $B C$ is a side of regula hexagon.

$\angle O B A$

- Watch Video Solution

11. In the given figure, $A B$ is a side of regular pentagon and $B C$ is a side of regula hexagon.

$\angle O B C$

- Watch Video Solution

12. In the given figure, $A B$ is a side of regular pentagon and $B C$ is a side of regula hexagon.

$\angle A B C$

- Watch Video Solution

13. In the given figure, arc $A B$ and arc $B C$ are equal in length. If $\angle A O B=48^{\circ}$, find
$\angle B O C$

D Watch Video Solution
14. In the given figure, arc $A B$ and arc $B C$ are equal in length. If $\angle A O B=48^{\circ}$, find
$\angle O B C$

- Watch Video Solution

15. In the given figure, arc $A B$ and arc $B C$ are equal in length. If $\angle A O B=48^{\circ}$, find
$\angle A O C$

D Watch Video Solution

16. In the given figure, arc $A B$ and arc $B C$ are equal in length. If $\angle A O B=48^{\circ}$, find
$\angle O A C$
17. In the given figure, the lengths of arcs $A B$ and BC are in the ratio $3: 2$. If $\angle A O B=96^{\circ}$, find:
$\angle B O C$

- Watch Video Solution

18. In the given figure, the lengths of arcs $A B$ and BC are in the ratio $3: 2$. If $\angle A O B=96^{\circ}$,
find:
$\angle A B C$

D Watch Video Solution

19. In the given figure, $A B=B C=D C$ and
$\angle A O B=50^{\circ}$

$\angle A O C=$?

- Watch Video Solution

20. In the given figure, $A B=B C=D C$ and
$\angle A O B=50^{\circ}$
$\angle A O D$

D Watch Video Solution

21. In the given figure, $A B=B C=D C$ and
$\angle A O B=50^{\circ}$
$\angle B O D$
22. In the given figure, $A B=B C=D C$ and
$\angle A O B=50^{\circ}$
$\angle O A C$

D Watch Video Solution
23. In the given figure, $A B=B C=D C$ and
$\angle A O B=50^{\circ}$
$\angle O D A$

- Watch Video Solution

24. In the given figure, $A B$ is a side of a regular hexagon and $A C$ is a side of a regular eight sided polygon. Find :
$\angle A O B$

D Watch Video Solution

25. In the given figure, $A B$ is a side of a regular
hexagon and $A C$ is a side of a regular eight sided polygon. Find :
$\angle A O C$

- Watch Video Solution

26. In the given figure, $A B$ is a side of a regular
hexagon and $A C$ is a side of a regular eight sided polygon. Find :
$\angle B O C$

D Watch Video Solution

27. In the given figure, $A B$ is a side of a regular
hexagon and $A C$ is a side of a regular eight sided polygon. Find :
$\angle O B C$

- Watch Video Solution

28. In the given figure, O is the centre of the circle and the length of arc $A B$ is twice the length of arc $B C$.
if $\angle A O B=100^{\circ}$ find $\angle B O C$
29. In the given figure, O is the centre of the
circle and the length of arc $A B$ is twice the length of arc $B C$.
if $\angle A O B=100^{\circ}$ find
$\angle O A C$

- Watch Video Solution

1. The radius of a circle is 13 cm and the length of one of its chords is 24 cm . Find the distance of the chord from the centres.

D Watch Video Solution

2. Prove that equal chords of congruent circles subtend equal angles at their centre.
3. Draw the circles of different radii. How many
points, these circles can have in common ?
What is the maximum number of common points?

- Watch Video Solution

4. Suppose you are given a circle. Describe a method by which you can find the centre of this circle.
5. Given two equal chords $A B$ and $C D$ of a circle, with centre O, intersecting each other at point p prove that $A P=C P$

D Watch Video Solution

6. Given two equal chords $A B$ and $C D$ of a circle, with centre O, intersecting each other at point p prove that

$B P=D P$

- Watch Video Solution

7. In a cricle of radius $10 \mathrm{~cm}, \mathrm{AB}$ and CD are two parallel chords of lengths 16 cm and 12 cm respectively. Calculate the distance between the chords, if they are on :
the same side of the centre.
8. In a cricle of radius $10 \mathrm{~cm}, \mathrm{AB}$ and CD are two parallel chords of lengths 16 cm and 12 cm respectively. Calculate the distance between the chords, if they are on :
the opposite sides of the centre.

- Watch Video Solution

9. In the given figure, O is the centre of the circle with radius 20 cm and $O D$ is perpendicular to $A B$. If $A B=32 \mathrm{~cm}$, find the
length of CD

- Watch Video Solution

10. In the given figure, $A B$ and $C D$ are two equal chords of a circle, with centre O. If P is
the mid-point of chord $A B, Q$ is the mid-point of chord CD and $\angle P O Q=150^{\circ}$ find `angleAPQ

- Watch Video Solution

11. In the given figure, AOC is the diameter of the circle, with centre O .

If arc $A X B$ is half of arc $B Y C$, find $Z B O C$.

D Watch Video Solution

12. The circumference of a circle, with centre O,
is divided into three arcs $\mathrm{APB}, \mathrm{BQC}$ and CRA such that
$\frac{\operatorname{arc} A P B}{2}=\frac{\operatorname{arcBQC}}{3}=\frac{\operatorname{arc} C R A}{4}$
Find
$\angle B O C$.

- Watch Video Solution

Topic 1

1. A chord of length 24 cm is at a distance of 5
cm from the centre of the circle. Find the
length of the chord of the same circle which is at a distance of 12 cm from the centre.
2. The figure, given below, show a circle with centre O in which diameter $A B$ bisects the chord $C D$ at point E. If $C E=E D=8 \mathrm{~cm}$ and $E B=$ 4 cm . Find the radius of the circle.

D Watch Video Solution
3. A straight line is drawn cutting two equal circles and passing through the mid-point M of the joining their centres O and O^{\prime}.

Prove that the chord $A B$ and $C D$, which are intercepted by the two circles, are equal

(Watch Video Solution
4. The length of common chord of two intersecting circles is 30 cm . If the diameters of these two circles be 50 cm and 34 cm . Calculate the distance between their centres.

D Watch Video Solution

5. In the following the line $A B C D$ is perpendicular to $\mathrm{PQ} . \mathrm{P}$ and Q are the centres of the circles Show that: $A B=C D$
6. The shows two concentric circles and $A D$ is a chord of lenger circle. prove that $A B=C D$

D Watch Video Solution
7. In a circle of radius 17 cm , two parallel chord of length 30 cm and 16 cm are drawn, find the distance between the chords, if both the chords are :

On the opposite sides of the centre,

D Watch Video Solution

8. In a circle of radius 17 cm , two parallel
chords of lengths 30 cm and 16 cm are drawn.

Find the distance between the chords, if both
the chords are :

on the same side of the centre

D Watch Video Solution

9. A chord CD of a circles, whose centre is O, is bisected at P by a diameter AB .

Give $04=O B=15 \mathrm{~cm}$ and $\mathrm{OP}=9 \mathrm{~cm}$.

CD

D Watch Video Solution
10. A chord CD of a circles, whose centre is O, is
bisected at P by a diameter AB .

Give $04=O B=15 \mathrm{~cm}$ and $O P=9 \mathrm{~cm}$.

AD

D Watch Video Solution
11. A chord CD of a circles, whose centre is O, is bisected at P by a diameter AB .

Give $O A=O B=15 \mathrm{~cm}$ and $O P=9 \mathrm{~cm}$.

CB

12. Two equal chord $A B$ and $C D$ of a circle with

 centre O, intersect each other at point P inside the circle.

Prove that:

$B P=D P$

- Watch Video Solution

13. In the following figure, $O A B C$ is a square. A
circle is drawn with as centre which meets OC at P and $O A$ at Q. Prove that:

$\triangle O P A \cong \triangle O Q C$

- Watch Video Solution

14. In the following figure, $O A B C$ is a square. A
circle is drawn with as centre which meets OC at P and $O A$ at Q. Prove that:

$\triangle B P C \cong \triangle B Q A$

- Watch Video Solution

15. $A B$ and $C D$ are two equal chords of a circle with centre O which intersect each other at
right angle at P . If $\mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{ON} \perp \mathrm{CD}$, show that OMPN is a square.

D Watch Video Solution

16. In the given diagram ' O is the centre of the circle and $A B$ is parallel to $C D . A B=24 \mathrm{~cm}$ and distance between he chord $A B$ and $C D$ is 17 cm .

It the radius of the circle is 13 cm , find the length of the chord CD.

D Watch Video Solution

17. In the given figure o is the centre of the two concentric circles. A line T cuts the circles at A, B, C and D as shown in the figure. $O P$ is perpendicular to AD.

Given $O A=34 \mathrm{~cm}, O P=16 \mathrm{~cm}$ and $A B=18 \mathrm{~cm}$
Find:
length of chord AD

Watch Video Solution

18. In the given figure o is the centre of the two concentric circles. A line T cuts the circles
at A, B, C and D as shown in the figure. $O P$ is
perpendicular to AD.
Given $O A=34 \mathrm{~cm}, O P=16 \mathrm{~cm}$ and $A B=18 \mathrm{~cm}$
Find:
length of chord BC

D Watch Video Solution

19. In the given figure o is the centre of the
two concentric circles. A line T cuts the circles
at A, B, C and D as shown in the figure. $O P$ is
perpendicular to AD.

Given $O A=34 \mathrm{~cm}, O P=16 \mathrm{~cm}$ and $A B=18 \mathrm{~cm}$

Find :
radius of the smaller circle

- Watch Video Solution

1. In the given figure, an equilateral triangle $A B C$ is inscribed in a circle with centre 0 . Find :
$\angle B O C$

D Watch Video Solution

2. In the given on equilateral triangle $A B C$ is
inscribed in a ciecle with centre O. Find:
$\angle O B C$ and $\angle B O C$

3. In the given the length of arcs $A B$ and $B C$ are

 in the ratio 3:2.If $\angle A O B=96^{\circ}$ find
$\angle B O C$

- Watch Video Solution

4. In the given the length of arcs $A B$ and $B C$
are in the ratio $3: 2$.
If $\angle A O B=96^{\circ}$ find
$\angle A B C$
5. Draw the circles of different radii. How many points, these circles can have in common ? What is the maximum number of common points?

- Watch Video Solution

6. Suppose you are given a circle. Describe a method by which you can find the centre of this circle.
7. The circumference of a circle, with centre O , is divided into three arcs APB, BQC and CRA such that
$\frac{\operatorname{arc} A P B}{2}=\frac{\operatorname{arcBQC}}{3}=\frac{\operatorname{arc} C R A}{4}$
Find
$\angle B O C$.

- Watch Video Solution

8. In the given arc $A B=$ twice are $B C$ and
$\angle A O B=80^{\circ}$ find:
$\angle B O C$

- Watch Video Solution

9. In the given arc $A B=$ twice are $B C$ and
$\angle A O B=80^{\circ}$ find:
$\angle O A C$

- Watch Video Solution

10. In the given $A B$ is a side of regular pentagon and $B C$ is a side of regular hexagon.

$\angle A O B$

D Watch Video Solution

11. In the given $A B$ is a side of regular pentagon and $B C$ is a side of regular hexagon.

$\angle B O C$

- Watch Video Solution

12. In the given $A B$ is a side of regular pentagon and $B C$ is a side of regular hexagon.

$\angle A O C$

- Watch Video Solution

13. In the given $A B$ is a side of regular pentagon and $B C$ is a side of regular hexagon.

$\angle O B A$

- Watch Video Solution

14. In the given $A B$ is a side of regular pentagon and $B C$ is a side of regular hexagon.

$\angle O B C$

D Watch Video Solution

15. In the given $A B$ is a side of regular pentagon and $B C$ is a side of regular hexagon.

$\angle A B C$

- Watch Video Solution

16.

In
the
given
$A B=B C=D C$ and $\angle A O B=50^{\circ}$
$\angle A O C$

- Watch Video Solution

17. In
the
given
$A B=B C=D C$ and $\angle A O B=50^{\circ}$
$\angle A O D$

D Watch Video Solution

18.

In
the
given
$A B=B C=D C$ and $\angle A O B=50^{\circ}$
$\angle B O D$

- Watch Video Solution

19. In the given figure, $A B=B C=D C$ and
$\angle A O B=50^{\circ}$
$\angle O A C$

D Watch Video Solution
20. In the given figure, $A B=B C=D C$ and
$\angle A O B=50^{\circ}$
$\angle O D A$

D Watch Video Solution

21. Prove that equal chords of congruent circles subtend equal angles at their centre.
22. In the given figure, $A B$ and $C D$ are two equal chords of a circle, with centre O. If P is the mid-point of chord $A B, Q$ is the mid-point of chord CD and $\angle P O Q=150^{\circ}$ find `angleAPQ

- Watch Video Solution

23. In the given figure, ' O ' is the centre of the circle, $\operatorname{Arc} A B=\operatorname{Arc} B C=\operatorname{Arc} C D$. If $\angle O A B=48^{\circ}$, find $:$
(i) $\angle A O B$
(ii) $\angle B O D$

- Watch Video Solution

24. In the given figure, ' O ' is the centre of the
circle, $\operatorname{Arc} A B=\operatorname{Arc} B C=\operatorname{Arc} C D$. If
$\angle O A B=48^{\circ}$, find :
(i) $\angle A O B$
(ii) $\angle B O D$

- Watch Video Solution

25. In the given ' O ' is the centre of the circle,

$$
\text { Arc } A B=A r c B C=C d . I f \angle O A B=48^{\circ} \text {, }
$$

find:

$\angle O B D$

