

MATHS

BOOKS - ICSE

INEQUALITIES

Example

1. In the adjoining figure, AD bisects $\angle A$.

Arrange AB, BD and DC in the descending

order of their lengths.

2. In the given figure, AC is perpendicular to line PQ and BC = CD. Show that AE is greater

than AB.

Watch Video Solution

3. In the given figure, AB = AC. Prove that AF is greater than AE.

Watch Video Solution

4. In the figure, given alongside, AD bisects angle BAC. Prove that :

- (i) AB>BD
- (ii) AC > CD

5. In quadrilateral ABCD, AB is the shortest side and DC is the longest side. Prove that :

(ii)
$$\angle A > \angle C$$

6. AD is a median of triangle ABC. Prove that:

$$AB + AC > 2AD$$

Watch Video Solution

7. P is any point in the interior of a triangle

ABC.

Prove that : PA + PB < AC + BC

Watch Video Solution

8. In the adjoining figure, AD bisects $\angle A$. Arrange AB, BD and DC in the descending order of their lengths.

9. In the given figure, AC is perpendicular to line PQ and BC = CD. Show that AE is greater than AB.

Watch Video Solution

10. In the given figure, AB = AC. Prove that AF is greater than AE.

Watch Video Solution

11. In the figure, given alongside, AD bisects angle BAC. Prove that :

- (i) AB>BD
- (ii) AC > CD

(iii)
$$AB + AC > BC$$

12. In quadrilateral ABCD, AB is the shortest side and DC is the longest side. Prove that:

(ii)
$$\angle A > \angle C$$

13. AD is a median of triangle ABC. Prove that:

$$AB + BC + AC > 2AD$$

Watch Video Solution

14. P is any point in the interior of a triangle

ABC.

Prove that : PA + PB < AC + BC

Watch Video Solution

1. From the following figure, prove that :

Watch Video Solution

2. In a triangle PQR, QR = PR and $\angle P = 36^{\circ}$.

Which is the largest side of the triangle?

3. If two sides of a triangle are 8 cm and 13 cm, then the length of the third side is between a cm and b cm. Find the values of a and b such that a is less than b.

4. In each of following figures, write BC, AC and CD in ascending order of their lengths.

5. Arrange the sides of ΔBOC in descending order of their lengths. BO and CO are

bisectors of angles ABC and ACB respectively.

6. D is a point in side BC of triangle ABC. If

AD>AC, show that AB>AC.

7. In the following figure,

$$\angle BAC = 60^{\circ}$$
 and $\angle ABC = 65^{\circ}$.

Prove that:

(i)
$$CF > AF$$
 (ii) $DC > DF$

8. In the following figure,

AC = CD,
$$\angle BAD = 110^{\circ}$$
 and $\angle ACB = 74^{\circ}$.

Prove that : BC > CD.

0

Watch Video Solution

- 9. From the following figure, prove that:
- (i) AB > BD

(ii) AC > CD

(iii)
$$AB + AC > BC$$

Watch Video Solution

10. In a quadrilateral ABCD, prove that:

(i)
$$AB + BC + CD > DA$$

(ii)
$$AB+BC+CD+DA>2AC$$

(iii)
$$AB+BC+CD+DA>2BD$$

(i) BP > PA

Watch Video Solution

11. In the following figure, ABC is an equilateral triangle and P is any point in AC, prove that:

12. P is any point inside the triangle ABC. Prove

that : $\angle BPC > \angle BAC$.

Watch Video Solution

13. Prove that the straight line joining the vertex of an isosceles triangle to any point in the base is smaller than either of the equal sides of the triangle.

Watch Video Solution

14. In the following diagram, AD = AB and AE bisects angle A. Prove that :

(i) BE = DE (ii) $\angle ABD > \angle C$

15. The sides AB and AC of a triangle ABC are produced, and the bisectors of the external

angles at B and C meet at P. Prove that if

AB > AC, then PC > PB.

16. In the following figure, AB is the largest side and BC is the smallest side of the triangle ABC.

Write the angles x°, y° and z° in ascending order of their values.

Watch Video Solution

17. In quadrilateral ABCD, AB is the shortest side and DC is the longest side. Prove that :

(ii)
$$\angle A > \angle C$$

18. In triangle ABC, side AC is greater than side AB. If the internal bisector of angle A meets the opposite side at point D, prove that : $\angle ADC$ is greater than $\angle ADB$.

Watch Video Solution

19. In isosceles triangle ABC, sides AB and AC are equal. If point D lies in base BC and point E lies on BC produced (BC being produced through vertex C), prove that:

- (i) AC > AD
- (ii) AE > AC
- (iii) AE>AD

Watch Video Solution

20. Given : ED = EC

Prove : AB + AD > BC.

21. In triangle ABC, AB>AC and D is a point in side BC. Show that : AB>AD.

22. From the following figure, prove that :

Watch Video Solution

23. In a triangle PQR, QR = PR and $\angle P = 36^{\circ}$.

Which is the largest side of the triangle?

24. If two sides of a triangle are 8 cm and 13 cm, then the length of the third side is between a cm and b cm. Find the values of a and b such that a is less than b.

25. In each of following figures, write BC, AC and CD in ascending order of their lengths.

26. Arrange the sides of ΔBOC in descending order of their lengths. BO and CO are

bisectors of angles ABC and ACB respectively.

27. D is a point in side BC of triangle ABC. If

AD>AC, show that AB>AC.

28. In the following figure,

$$\angle BAC = 60^{\circ}$$
 and $\angle ABC = 65^{\circ}$.

Prove that:

(i)
$$CF > AF$$
 (ii) $DC > DF$

29. In the following figure,

AC = CD,
$$\angle BAD = 110^{\circ}$$
 and $\angle ACB = 74^{\circ}$.

Prove that : BC > CD.

0

Watch Video Solution

30. From the following figure, prove that :

(i) AB > BD

(ii) AC > CD

(iii)
$$AB + AC > BC$$

Watch Video Solution

31. In a quadrilateral ABCD, prove that:

(i)
$$AB + BC + CD > DA$$

(ii)
$$AB+BC+CD+DA>2AC$$

(iii)
$$AB+BC+CD+DA>2BD$$

(i) BP > PA

Watch Video Solution

32. In the following figure, ABC is an equilateral triangle and P is any point in AC, prove that:

33. P is any point inside the triangle ABC. Prove

that : $\angle BPC > \angle BAC$.

Watch Video Solution

34. Prove that the straight line joining the vertex of an isosceles triangle to any point in the base is smaller than either of the equal sides of the triangle.

Watch Video Solution

35. In the following diagram, AD = AB and AE bisects angle A. Prove that :

(i) BE = DE (ii) $\angle ABD > \angle C$

36. The sides AB and AC of a triangle ABC are produced, and the bisectors of the external

angles at B and C meet at P. Prove that if

AB > AC, then PC > PB.

37. In the following figure, AB is the largest side and BC is the smallest side of the triangle ABC.

Write the angles x°, y° and z° in ascending order of their values.

Watch Video Solution

38. In quadrilateral ABCD, side AB is the longest and side DC is the shortest. Prove that

:

(i)
$$\angle C > \angle A$$
 (ii) $\angle D > \angle B$

Watch Video Solution

39. In triangle ABC, side AC is greater than side AB. If the internal bisector of angle A meets the opposite side at point D, prove that : $\angle ADC$ is greater than $\angle ADB$.

Watch Video Solution

40. In isosceles triangle ABC, sides AB and AC are equal. If point D lies in base BC and point E lies on BC produced (BC being produced through vertex C), prove that:

- (i) AC > AD
- (ii) AE > AC
- (iii) AE > AD

Watch Video Solution

41. Given : ED = EC

Prove : AB + AD > BC.

42. In triangle ABC, AB > AC and D is a point

in side BC. Show that : AB > AD.

Watch Video Solution