©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - ICSE

MID-POINT THEOREM

3 Marks Question

1. D, E and F are the mid-points of the sides $A B$,
$B C$ and $C A$ of an isosceles triangle $A B C$ in
which $\mathrm{AB}=\mathrm{BC}$. Prove that $\triangle D E F$ is also isosceles.

D Watch Video Solution

2. D, E and F are the mid-points of the sides $A B$, $B C$ and $C A$ respectively of $A A B C$. $A E$ meets $D F$ at O. P and Q are the mid-points of $O B$ and $O C$ respectively. Prove that DPOF is a parallelogram.
3. In triangle $A B C, P$ is the mid-point of side $B C$.

A line through P and parallel to CA meets $A B$ at point Q and a line through Q and parallel to BC meets median AP at point R. Prove that: $A P=2 A R$

- Watch Video Solution

4. In triangle $A B C, P$ is the mid-point of side $B C$.

A line through P and parallel to CA meets $A B$ at point Q and a line through Q and a line through Q and parallel to $B C$ meets median $A P$
at point R. Prove that :
$B C=4 Q R$.

- Watch Video Solution

5. In trapezium $A B C D, A B$ is parallel to $D C . P$ and Q are the mid-points of $A D$ and $B C$ respectively. BP product meets CD produced at point E. Prove that :

Point P bisects $B E$,

D Watch Video Solution
6. In trapezium $A B C D, A B$ is parallel to $D C . P$ and Q are the mid-points of $A D$ and $B C$ respectively. BP produced meets CD produced at point E. Prove that :
$P Q$ is parallel to $A B$.

- Watch Video Solution

7. In a triangle $A B C, A D$ is a medium and E is mid-point of median AD. A line through B and
E meets $A C$ at point F.
8. In the given figure, M is mid-point of $A B$ and $D E$, whereas N is mid-point of $B C$ and DF. Show that : $\mathrm{EF}=\mathrm{AC}$.

- Watch Video Solution

9. In triangle $A B C$, the medians $B P$ and $C Q$ are produced upto points M and N respectively such that $\mathrm{BP}=\mathrm{PM}$ and $\mathrm{CQ}=\mathrm{QN}$. Prove that:
M, A and N are collinear.

- Watch Video Solution

10. In triangle $A B C$, the medians $B P$ and $C Q$ are produced upto points M and N respectively such that $B P=P M$ and $C Q=Q N$. Prove
that :

A is the mid-point of $M N$.

D Watch Video Solution

11. In triangle $A B C, M$ is mid-point of $A B, N$ is mid-point of $A C$ and D is any point in base $B C$.

Use Intercept Theorem to show that MN bisects AD.
12. In the given figure, $A D$ and $C E$ are medians
and $D F\left|\mid C E\right.$. Prove that : $F B=\frac{1}{4} A B$.

D Watch Video Solution

13. In parallelogram $A B C D, E$ is the mid-point of
$A B$ and $A P$ is parallel to $E C$ which meets $D C$ at point O and $B C$ produced at P. Prove that :

$B P=2 A D$

(D) Watch Video Solution

14. In parallelogram $A B C D, E$ is the mid-point of
$A B$ and $A P$ is parallel to EC which meets DC at
point O and $B C$ produced at P. Prove that:

O is mid-point of $A P$.

D Watch Video Solution

1. Prove that the figure obtained by joining the mid-points of the adjacent sides of a rectangle is a rhombus.

- Watch Video Solution

2. The diagonals of a quadrilateral intersect at right angles. Prove that the figure obtained by joining the mid-points of the adjacent sides of the quadrilateral is a rectangle.
3. L and M are the mid-points of sides $A B$ and

DC respectively of parallelogram $A B C D$. Prove that segments DL and BM trisect diagonal AC.

- Watch Video Solution

4. $A B C D$ is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral PQRS is a rhombus.

5. A parallelogram $A B C D$ has P the mid-point of

DC and Q a midpoint of AC such that
$C Q=\frac{1}{4} A C . P Q$ produced meets $B C$ at R . Prove that:

R is the mid-point of $B C$
6. D and F are the mid-points of sides $A B$ and $A C$ of a triangle $A B C$. A line through F and parallel to $A B$ meets $B C$ at point E. Prove that BDFE is a parallelogram

D Watch Video Solution

7. D and F are the mid-points of sides $A B$ and $A C$ of a triangle $A B C$. A line through F and
parallel to $A B$ meets $B C$ at point E.

Find AB , if $E F=4.8 \mathrm{~cm}$.

D Watch Video Solution

8. In the figure, given below, $2 A D=A B, P$ is
the mid-point of $A B, Q$ is the mid-point of $D R$ and $P R|\mid B S$. Prove that:

$A Q|\mid B S$

- Watch Video Solution

9. In the figure, given below, $2 A D=A B, P$ is
the mid-point of $A B, Q$ is the mid-point of $D R$ and $P R|\mid B S$. Prove that:

$D S=3 R S$

- Watch Video Solution

10. In parallelogram $A B C D, E$ and F are midpoints of the sides $A B$ and $C D$ respectively. The
lines segments $A F$ and $B F$ meet the line
segments $E D$ and $E C$ at points G and H respectively. Prove that:
triangle HEB and FHC are congruent.

D Watch Video Solution

11. In parallelogram $A B C D, E$ and F are midpoints of the sides $A B$ and $C D$ respectively. The
lines segments $A F$ and $B F$ meet the line segments $E D$ and $E C$ at points G and H respectively. Prove that :

GEHF is a parallelogram.
12. In the given figure, $A B C D$ is a parallelogram.
$A B$ is produced to P, such that
$A B=B P$ and $P Q$ is drawn parallel to BC to meet $A C$ produced at Q. Given
$A B=8 \mathrm{~cm}, A D=5 \mathrm{~cm}, A C=10 \mathrm{~cm}$.

Prove that point C is mid-point of $A Q$.

(Watch Video Solution

13. In the given figure, $A B C D$ is a parallelogram.
$A B$ is produced to P, such that
$A B=B P$ and $P Q$ is drawn parallel to BC to meet AC produced at Q. Given
$A B=8 \mathrm{~cm}, A D=5 \mathrm{~cm}, A C=10 \mathrm{~cm}$.

Find the perimeter of quadrilateral BCQP.

(Watch Video Solution

14. In the given figure $A B C D$ is a trapezium, P is
the mid-point of side AD and $P R\|A B\| D C$.

Prove that R is the mid-point of side $B C$
(D) Watch Video Solution
15. In the given figure $A B C D$ is a trapezium, P is
the mid-point of side AD and $P R\|A B\| D C$.

Find the length of PR, if
$A B=12 \mathrm{~cm}$ and $D C=8 \mathrm{~cm}$

- Watch Video Solution

