©゙" doubtnut India's Number 1 Education App

MATHS

BOOKS - ICSE

PYTHAGORAS THEORAM

Exercise 13 A

1. A ladder 13 m long rests against a vertical wall. If the foot of the ladder is 5 m from the foot of the wall, find the distance of the other end of the ladder from the ground.

- Watch Video Solution

2. A man goes 40 m due north and then 50 m due west. Find his distance from the staring point.
3. In the figure: $\angle P S Q=90^{\circ}, P Q=10 \mathrm{~cm}, Q S=6 \mathrm{~cm}$ and $R Q=9 \mathrm{~cm}$
. Find the value of PR.

- Watch Video Solution

4. The given figure shows a quadrilateral $A B C D$ in which $A D=13 \mathrm{~cm}, \mathrm{DC}=12$ $\mathrm{cm}, \mathrm{BC}=3 \mathrm{~cm}$ and $\angle A B C=\angle B C D=90^{\circ}$. Calculate the length of AB .

- Watch Video Solution

5. $A D$ is draw perendicular to base $B C$ of an equilateral triangle $A B C$. Given $B C=10 \mathrm{~cm}$ find the length of $A D$, correct to 1 place of decimal.

- Watch Video Solution

6. In triangle $A B C$, given below, $A B=8 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $A C=3 \mathrm{~cm}$.

Calculate the length of OC

(Watch Video Solution

7. In $\triangle A B C, A B=A C=x, B C=10 \mathrm{~cm}$ and the area of triangle is 60 $c m^{2}$. Find x .

- Watch Video Solution

8. If the sides of a triangle are in the ratio $1: \sqrt{2}: 1$, show that it is a rightangled triangle.

0
 Watch Video Solution

9. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between their feet is 12 m , find the distance between their tops.

- Watch Video Solution

10. In
the
given
figure,
$A B|\mid C D, A B=7 \mathrm{~cm}, B D=25 \mathrm{~cm}$ and $C D=17 \mathrm{~cm}$, find the length of side $B C$.

O
 Watch Video Solution

$\angle B=90^{\circ}, X Y / / B C, A B=12 \mathrm{~cm}, A Y=8 \mathrm{~cm}$ and $A X: X B=1: 2=$
. Find the lenghts of C and $B C$.

- Watch Video Solution

12. In $\triangle A B C, \angle B=90^{\circ}$. Find the sides of the triangle if:
$A B=(x-3) c m, B C=(x+4) c m$ and $A C=(x+6) c m$.
13. In $\triangle A B C, \angle B=90^{\circ}$, find the sides of the triangle, if :
(i) $A B=(x-3) c m, B C=(x+4) c m$ and $A C=(x+6) c m$
(ii) $A B=x c m, B C=(4 x+4) c m$ and $A C=(4 x+5) c m$

- Watch Video Solution

Exercise 13 B

1. In the figure, given below, $A D \perp B C$.

Prove that : $c^{2}=a^{2}+b^{2}-2 a x$.

2. In equilateral $\triangle A B C, A D \perp B C$ and $\mathrm{BC}=\mathrm{x} \mathrm{cm}$. Find, in terms of x , the length of AD.

- Watch Video Solution

3. $A B C$ is a triangle, right angled at B, M is a point on $B C$. Prove that :
$A M^{2}+B C^{2}=A C^{2}+B M^{2}$

4. M and N are mid- point on sides QR and PQ respectively of $\triangle P Q R$, right-anggled at Q. Prove that :
$P M^{2}+R N^{2}=5 M N^{2}$.

- Watch Video Solution

5. M and N are mid point on sides $Q R$ and PQ respectively of $\triangle P Q R$, right-anggled at Q. Prove that :

$$
4 P M^{2}=4 P Q^{2}+Q R^{2} .
$$

- Watch Video Solution

6. M and N are point on sides QR and PQ respectively of $\triangle P Q R$, rightanggled at Q. Prove that :
$4 P M^{2}=4 P Q^{2}+Q R^{2}$.

- Watch Video Solution

7. In Figure, PandQ are the midpoints of the sides $C A a n d C B$ respectively of $A B C$ right angled at C. Prove that $4\left(A Q^{2}+B P^{2}\right)=5 A B^{2}$.

- Watch Video Solution

8. about to only mathematics

- Watch Video Solution

9. In a rectangle $A B C D$, prove that : $A C^{2}+B D^{2}=A B^{2}+B C^{2}+C D^{2}+D A^{2}$.

- Watch Video Solution

10. In a quadrilateral $\mathrm{ABCD}, \angle B=90^{\circ}$ and $\angle D=90^{\circ}$. Prove that :

$$
2 A C^{2}-A B^{2}=B C^{2}+C D^{2}+D A^{2}
$$

11. O is any point inside a rectangle $A B C D$. Prove that $O B^{2}+O D^{2}=O A^{2}+O C^{2}$.

- Watch Video Solution

12. In the following figure, $O P, O Q$ and $O R$ are drawn perpendiculars to the sides $B C, C A$ and $A B$ repectively of triangle $A B C$. Prove that :

$$
A R^{2}+B P^{2}+C Q^{2}=A Q^{2}+C P^{2}+B R^{2}
$$

- Watch Video Solution

13. Diagonals of rhombus ABCD intersect each other at point O. Prove that
$O A^{2}+O C^{2}=2 A D^{2}-\frac{B D^{2}}{2}$

- Watch Video Solution

14. In the figure $A B=B C$ and $A D$ is perpendicular to $C D$. Prove that :

$$
A C^{2}=2 . B C . D C
$$

15. In an isosceles triangle $A B C, A B=A C$ and D is a point on $B C$ produced.

Prove that:
$A D^{2}=A C^{2}+B D . C D$

- Watch Video Solution

16. In triangle ABC , angle $A=90^{\circ}, C A=A B$ and D is a point on AB produced. Prove that:

$$
D C^{2}-B D^{2}=2 A B . A D .
$$

17. In triangle $A B C, A B=A C$ and $B D$ is perpendicular to $A C$. Prove that : $B D^{2}-C D^{2}=2 C D \times A D$

- Watch Video Solution

18. In the following figure, $A D$ is perpendicular to $B C$ and D divides $B C$ in the ratio 1:3.

- Watch Video Solution

1. A ladder reaches a window which is 15 metres above the ground on one side of the street. Keeping its food at the same point, the ladder is turned to the other side of the street to reach a window 8 metre high. Find the width of the street, if the length of the ladder is 17 metres.

- Watch Video Solution

2.

In
the
given
diagram,
$A B=3 C D=18 \mathrm{~cm}$ and $3 B P=4 C P=36 \mathrm{~cm}$. Show that the measure of angle is 90°.

3. In the given figure, $A D$ is perpendicular to $B C$ produced. Prove that: $c^{2}=a^{2}+b^{2}+2 a x$.

- Watch Video Solution

4. M and N are point on sides QR and PQ respectively of $\triangle P Q R$, rightangled at Q. Prove that:
$P M^{2}+R N^{2}=P R^{2}+M N^{2}$

- Watch Video Solution

5. In triangle $\mathrm{ABC}, \angle A B C=90^{\circ}, \mathrm{AB}=\mathrm{c}$ unit, $\mathrm{BC}=\mathrm{a}$ unit, $\mathrm{AC}=\mathrm{b}$ unit, CD is perpendicular to $A B$ and $C D=p$ unit.
Prove that : $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$

6. $A B C$ is an equilateral triangle, P is a point in $B C$ such that $B P: P C=2: 1$. Prove that: $9 A P^{2}=7 A B^{2}$

- Watch Video Solution

7. The given figure shows a triangle $A B C$, in which $A B>A C$. E is the midpoint of $B C$ and $A D$ is perpendicular to $B C$.

Prove that : $A B^{2}+A C^{2}=2 B E^{2}+2 A E^{2}$

- Watch Video Solution

8. $A B C$ is an isosceles triangle in which $A B=A C=20 \mathrm{~cm}$ and $B C=24 \mathrm{~cm}$. PQRS is a rectangle drawn inside the isosceles triangle. Given $P Q=S R=y \mathrm{~cm}$ and $P S=Q R=2 x \mathrm{~cm}$.

Prove that : $y=16-\frac{4 x}{3}$.

- Watch Video Solution

9. Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

- Watch Video Solution

