

India's Number 1 Education App

MATHS

BOOKS - ICSE

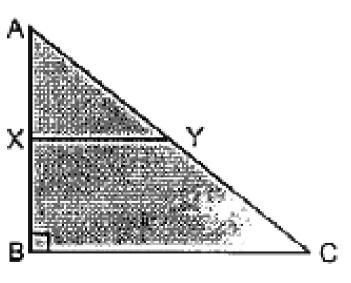
PYTHAGORAS THEOREM

3 Marks Questions

1. A ladder 13 m long rests against a vertical wall. If the foot of the ladder is 5 m from the foot of the wall, find the distance of the other end of the ladder from the ground.

Watch Video Solution

2. In $\Delta ABC, AB=AC=x, BC=10cm$ and the area of triangle is 60 cm^2 . Find x.


3. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between their feet is 12m, find the distance between their tops.

In the given figure,

$$\angle B=90^{\circ},XY\mid\;\mid BC,AB=12cm,AY=8cm\; ext{and}\;AX\!:\!XB=1\!:\!2=$$

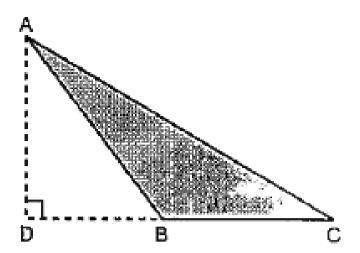
. Find the lengths of AC and BC.

5. In a quadrilateral ABCD, $\angle B = 90^{\circ}$ and $\angle D = 90^{\circ}$. Prove that :

$$2AC^2 - AB^2 = BC^2 + CD^2 + DA^2$$

Watch Video Solution

6. Diagonals of rhombus ABCD intersect each other at point O. Prove that


$$OA^2 + OC^2 = 2AD^2 - rac{BD^2}{2}$$

Watch Video Solution

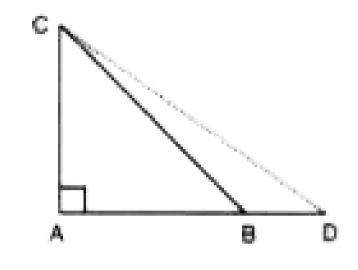
7. In the figure AB = BC and AD is perpendicular to CD. Prove that:

$$AC^2 = 2$$
. BC . DC

Watch Video Solution

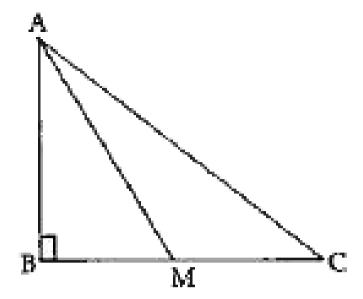
8. In an isosceles triangle ABC, AB = AC and D is a point on BC produced.

Prove that:


$$AD^2 = AC^2 + BD. CD$$

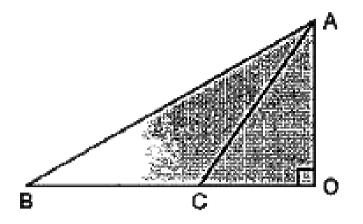
Watch Video Solution

9. In triangle ABC, angle $A=90^{\circ}\,, CA=AB$ and D is a point on AB produced. Prove that:


 $DC^2 - BD^2 = 2AB. AD.$

10. ABC is a triangle, right angled at B, M is a point on BC. Prove that :

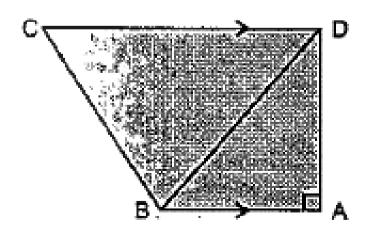
$$AM^2 + BC^2 = AC^2 + BM^2$$



Watch Video Solution

4 Marks Questions

1. In triangle ABC, given below, AB = 8 cm, BC = 6 cm and AC = 3 cm.


Calculate the length of OC

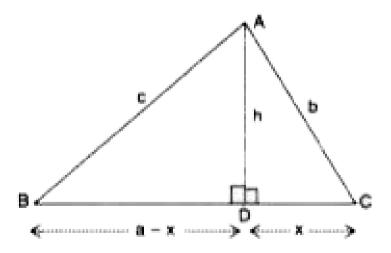
Watch Video Solution

2. In the given figure, $AB \mid CD, AB = 7cm, BD = 25cm \text{ and } CD = 17cm,$ find the length of side BC.

Watch Video Solution

3. In $\Delta ABC, \angle B=90^{\circ}$, find the sides of the triangle, if :

(i)
$$AB=(x-3)cm, BC=(x+4)cm$$
 and $AC=(x+6)cm$


(ii)
$$AB=xcm, BC=(4x+4)cm \ \ {
m and} \ \ AC=(4x+5)cm$$

Watch Video Solution

4. In the figure, given below, AD \perp BC.

Prove that : $c^2 = a^2 + b^2 - 2ax$.

5. M and N are the mid-points of the sides QR and PQ respectively of a

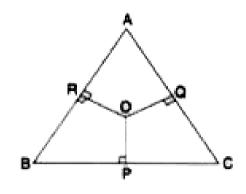
 ΔPQR , right-angled at Q. Prove that :

(i)
$$PM^2 + RN^2 = 5MN^2$$

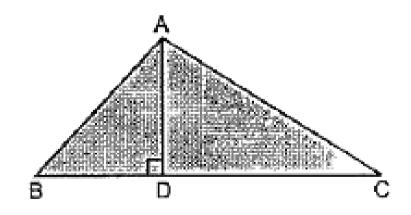
(ii)
$$4PM^2=4PQ^2+QR^2$$

(iii)
$$4RN^2 = PQ^2 + 4QR^2$$

(iv)
$$4(PM^2+RN^2)=5PR^2$$

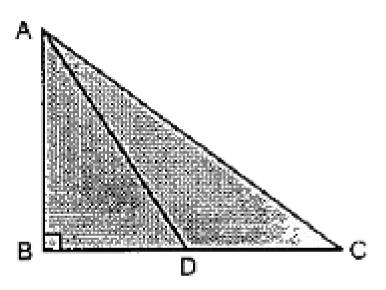


6. O is any point inside a rectangle ABCD. Prove that $OB^2 + OD^2 = OA^2 + OC^2$.


7. In the following figure, OP, OQ and OR are drawn perpendiculars to the sides BC, CA and AB repectively of triangle ABC. Prove that :

 $AR^2 + BP^2 + CQ^2 = AQ^2 + CP^2 + BR^2$

8. In the following figure, AD is perpendicular to BC and D divides BC in the ration 1:3.



Prove that : $2AC^2=2AB^2+BC^2$

9. In the given figure, triangle ABC is a right triangle with $\angle B=90^\circ$ and D is mid-point of side BC. Prove that :

$$AC^2 = AD^2 + 3CD^2$$

