

MATHS

BOOKS - ICSE

RATIONAL AND IRRATIONAL NUMBERS

Questions

1. Which of the rational numbers $\frac{3}{5}$ and $\frac{5}{7}$ is greater? Insert three rational numbers between $\frac{3}{5}$ and $\frac{5}{7}$ so that all the five numbers are in ascending order of their values.

- **2.** Without doing any actual division find whether each of the following is a terminating decimal or not , $(i)\frac{17}{50}(ii)\frac{7}{8}(iii)\frac{23}{72}$.
 - Watch Video Solution

- **3.** Prove that $5-\sqrt{3}$ is irrational.
 - Watch Video Solution

- **4.** Prove that $\sqrt{8}+5$ is irrational .
 - Watch Video Solution

- 5. Identify each of the following as rational or irrational number .
- (i) $\sqrt{12}$ (ii) $3\sqrt{2} imes\sqrt{8}$

6. Insert a rational number and an irrational number between 3 and 4.

7. Find two irrational numbers between 2 and 3.

8. Examine each of the as a rational number or an irrational number.

$$\left(3+\sqrt{2}\right)^2$$

9. Examine each of the as a rational number or an irrational number.

$$\left(3+\sqrt{3}
ight)\left(3-\sqrt{3}
ight)$$

10. Examine each of the as a rational number or an irrational number.

$$\frac{6}{\sqrt{3}}$$

11. Insert two rational numbers and two irrational numbers between $\sqrt{3}$ and $\sqrt{7}$.

- **12.** Which of the numbers is greater:
- $3\sqrt{2}$ and $2\sqrt{3}$

 $6\sqrt[3]{3}$ and $5\sqrt[3]{4}$

Watch Video Solution

- **13.** Which of the numbers is greater:
 - Watch Video Solution

- **14.** Compare : $\sqrt[3]{4}$ and $\sqrt{3}$
 - Watch Video Solution

15. Compare : $\sqrt[4]{8}$ and $\sqrt[6]{22}$

16. State with reasons which of the following is a surd which is not

(i) $\sqrt{27}$ (ii) $\sqrt{225} imes \sqrt{4}$

17. Find the least rationalizing factor of : (i) $\sqrt{27}$ (ii) $2\sqrt{125}$

18. Rationalize the denominator of $\frac{1}{\sqrt{2}}$

19. Simplify the following by rationalizing the denominator

$$\frac{1}{3-\sqrt{7}}$$

20. Simplify the following by rationalizing the denominator:

$$\frac{3}{\sqrt{5}+\sqrt{3}}$$

21. Simplify the following by rationalizing the denominator:

$$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$$

22. Simplify the following by rationalizing the denominator:

$$rac{7}{\sqrt{15}+2\sqrt{2}}$$

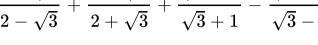
Watch Video Solution

23. Simplify the following by rationalizing the denominator:

$$\frac{30}{\sqrt{15} + 2\sqrt{2}}$$

24. Find the values of a and b if :
$$\frac{2\sqrt{3}+3\sqrt{2}}{2\sqrt{3}-3\sqrt{2}}=a+b\sqrt{6}$$

26. Prove that :
$$\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{2+\sqrt{3}}=1$$


Watch Video Solution

- **27.** Rationalize the denominator of : $\dfrac{1}{\sqrt{3}+\sqrt{2}-1}$
 - Watch Video Solution

$$\frac{1}{3-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2}.$$

29. If
$$\sqrt{3}$$
= 1.73 find the value of :

$$\frac{2+\sqrt{3}}{2-\sqrt{3}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}+\frac{\sqrt{3}-1}{\sqrt{3}+1}-\frac{\sqrt{3}+1}{\sqrt{3}-1}\,.$$

Watch Video Solution

30. If x = 3
$$\pm 2\sqrt{2}$$
 check whether $x+\frac{1}{x}$ is rational or irrational.

Exercise 1 A

- **1.** Is zero a rational number? Can it be written in the form $\frac{p}{a}$ where p and q are integers and $q \neq 0$?
 - **Watch Video Solution**

- **2.** Are the following statements true or false ? Give reasons for your answers.
- (i) Every whole number is a natural number.
- (ii) Every whole number is a rational number.
- (iii) Every integer is a rational number.
- (iv) Every rational number is a whole number.

3. Arrange $-\frac{5}{9}, \frac{7}{12}, -\frac{2}{3}$ and $\frac{11}{18}$ in the ascending order of their magnitudes. Also, find the difference between the largest and the smallest of these rational numbers. Express this difference as a decimal fraction correct to one decimal place.

4. Arrange $\frac{5}{8}$, $-\frac{3}{16}$, $-\frac{1}{4}$ and $\frac{17}{32}$ in the descending order of their magnitudes. Also, find the sum of the lowest and the largest of these rational numbers. Express the result obtained as a decimal fraction correct to two decimal places.

5. Without doing any actual division, find which of the rational numbers have terminating decimal representation :

(i)
$$\frac{7}{16}$$

6. Without doing any actual division, find which of the rational numbers have terminating decimal representation:

$$\frac{23}{125}$$

7. Without doing any actual division, find which of the rational numbers have terminating decimal representation:

8. Without doing any actual division, find which of the rational numbers have terminating decimal representation:

32

Watch Video Solution

9. Without doing any actual division, find which of the rational numbers have terminating decimal representation:

10. Without doing any actual division, find which of the rational numbers have terminating decimal representation :

_	•
4	0

11. Without doing any actual division, find which of the rational numbers have terminating decimal representation :

$\frac{61}{75}$

12. Without doing any actual division, find which of the rational numbers have terminating decimal representation:

123
250

Exercise 1 B

1. State, whether the following numbers are rational or not:

$$\left(2+\sqrt{2}
ight)^2$$

2. State, whether the following numbers are rational or not:

$$\left(3-\sqrt{3}
ight)^2$$

3. State, whether the following numbers are rational or not:

$$\left(5+\sqrt{5}
ight)\left(5-\sqrt{5}
ight)$$

4. State, whether the following numbers are rational or not:

$$\left(\sqrt{3}-\sqrt{2}\right)^2$$

5. State, whether the following numbers are rational or not:

$$\left(\frac{3}{2\sqrt{2}}\right)^2$$

6. State, whether the following numbers are rational or not:

$$\left(\frac{\sqrt{7}}{6\sqrt{2}}\right)$$

Watch Video Solution

7. Find the square of:

$$\frac{3\sqrt{5}}{5}$$

Watch Video Solution

8. Find the square of:

$$\sqrt{3} + \sqrt{2}$$

9. Find the square of :

$$\sqrt{5}-2$$

10. Find the square of :

$$3+2\sqrt{5}$$

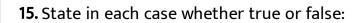
11. State in each case whether true or false:

$$\sqrt{2}+\sqrt{3}=\sqrt{5}$$

12. State in each case whether true or false:

$$2\sqrt{4}+2=6$$

13. State in each case whether true or false:


$$3\sqrt{7}-2\sqrt{7}=\sqrt{7}$$

14. State in each case whether true or false:

$$\frac{2}{7}$$
 is an irrational number .

 $\frac{5}{11}$ is a rational number.

16. State in each case whether true or false:

All rational numbers are real numbers.

17. State in each case whether true or false:

All real numbers are rational numbers.

18. State in each case whether true or false:

Some real numbers are rational numbers.

Watch Video Solution

19. Given universal set = $\left\{-6, -5\frac{3}{4}, -\sqrt{4}, -\frac{3}{5}, -\frac{3}{8}, 0, \frac{4}{5}, 1, 1\frac{2}{3}, \sqrt{8}, 3.01, \pi, 8.47\right\}$

From the given set find:

- (i) set of rational numbers
- (ii) set of irrational numbers

(iii) set of integers

set of non - negative integers

20. Prove that each of the numbers is irrational:

$$\sqrt{3} + \sqrt{2}$$

- 21. Prove that each of the numbers is irrational:
- $3-\sqrt{2}$
 - Watch Video Solution

22. Prove that each of the numbers is irrational:

$$\sqrt{5}-2$$

23. Write a pair of irrational numbers whose sum is irrational .	
Watch Video Solution	
24. Write a pair of irrational numbers whose sum is rational .	
Watch Video Solution	
25. Write of pair of irrational numbers whose difference is irrational.	
Watch Video Solution	
26. Write a pair of irrational numbers whose difference is rational.	
Watch Video Solution	

27. Write a pair of irrational numbers whose product is irrational.

28. Write a pair of irrational numbers whose product is rational.

29. Write in ascending order:

 $3\sqrt{5}$ and $4\sqrt{3}$

30. Write in ascending order:

 $2\sqrt[3]{5}$ and $3\sqrt[3]{2}$

31. Write in ascending order:

$$6\sqrt{5},\,7\sqrt{3}$$
 and $8\sqrt{2}$

 $2\sqrt[4]{6}$ and $3\sqrt[4]{2}$

 $7\sqrt{3}$ and $3\sqrt{7}$

Watch Video Solution

32. Write in descending order:

33. Write in descending order:

34. Compare :

$$\sqrt[6]{15}$$
 and $\sqrt[4]{12}$

35. Compare :

 $\sqrt{24}$ and $\sqrt[3]{35}$

36. Insert two irrational numbers between 5 and 6.

37. Insert five irrational numbers between $2\sqrt{5}$ and $3\sqrt{3}$.

38. Write two rational numbers between $\sqrt{2}$ and $\sqrt{3}$

39. Write three rational numbers between $\sqrt{3}$ and $\sqrt{5}$

40. Simplify each of the

$$\sqrt[5]{16} imes\sqrt[5]{2}$$

41. Simplify each of the

$$\frac{\sqrt[4]{243}}{\sqrt[4]{3}}$$

42. Simplify the following

$$\left(3+\sqrt{2}
ight)\!\left(4+\sqrt{7}
ight)$$

43. Simplify the following

$$\left(\sqrt{3}-\sqrt{2}\right)^2$$

1. State, with reason which of the are surds and which are not :
$\sqrt{180}$

2. State, with reason which of the are surds and which are not:

3. Solve :

$$(64)^{\frac{1}{2}}$$

5. Solve :

$$(25)^{rac{1}{2}}$$
 `

6. State, with reason which of the are surds and which are not :

$$\sqrt[3]{-125}$$

7. State, with reason which of the are surds and which are not:

$$\sqrt{\pi}$$

8. State, with reason which of the are surds and which are not:

$$\sqrt{3+\sqrt{2}}$$

9. Write the lowest rationalising factor of :

$$5\sqrt{2}$$

 $\textbf{10.} \ \textbf{Write the lowest rationalising factor of:} \\$

$$\sqrt{24}$$

11. Write the lowest rationalising factor of:

$$\sqrt{5}-3$$

12. Write the lowest rationalising factor of:

$$7-\sqrt{7}$$

13. Write the lowest rationalising factor of :

$$\sqrt{18} - \sqrt{50}$$

14. Write the lowest rationalising factor of:

$$\sqrt{5}-\sqrt{2}$$

15. Write the lowest rationalising factor of :

$$\sqrt{18} - \sqrt{50}$$

16. Write the lowest rationalising factor of :

$$15 - 3\sqrt{2}$$

17. Write the lowest rationalising factor of:

$$3\sqrt{2} + 2\sqrt{3}$$

18. Rationalize the denominatior of:

$$\frac{3}{\sqrt{5}}$$

$$\frac{2\sqrt{3}}{5}$$

20. Rationalize the denomination of:

$$\frac{1}{\sqrt{3}-\sqrt{2}}$$

21. Rationalize the denomination of:

$$\frac{3}{\sqrt{5}+\sqrt{2}}$$

22. Rationalize the denominatior of:

$$\frac{2-\sqrt{3}}{2+\sqrt{3}}$$

Watch Video Solution

23. Rationalize the denominatior of:

$$\frac{\sqrt{3}+1}{\sqrt{3}-1}$$

Watch Video Solution

24. Simplify the following by rationalizing the denominator:

$$rac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$$

25. Rationalize the denominatiors of:

$$\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}$$

Watch Video Solution

26. Rationalize the denominatiors of:

$$\frac{2\sqrt{5}+3\sqrt{2}}{2\sqrt{5}-3\sqrt{2}}$$

Watch Video Solution

27. Find the values of a and b in each of the

$$\frac{2+\sqrt{3}}{2-\sqrt{3}}=a+b\sqrt{3}$$

28. Find the values of a and b in each of the

$$\frac{\sqrt{7}-2}{\sqrt{7}+2}=a\sqrt{7}+b$$

Watch Video Solution

29. Find the values of a and b in each of the

$$\frac{3}{\sqrt{3}-\sqrt{2}}=a\sqrt{3}-b\sqrt{2}$$

30. Find the values of a and b in each of the

$$\frac{5 + 3\sqrt{2}}{5 - 3\sqrt{2}} = a + b\sqrt{2}$$

31. Simplify:

$$\frac{22}{2\sqrt{3}+1}+\frac{17}{2\sqrt{3}-1}$$

Watch Video Solution

32. Simplify:

$$rac{\sqrt{2}}{\sqrt{6}-\sqrt{2}}-rac{\sqrt{3}}{\sqrt{6}+\sqrt{2}}$$

Watch Video Solution

33. If
$${\sf x}\,=rac{\sqrt{5}-2}{\sqrt{5}+2}$$
 and $y=rac{\sqrt{5}+2}{\sqrt{5}-2}$: find : x^2

34. If
$$\mathsf{x} = \frac{\sqrt{5}-2}{\sqrt{5}+2}$$
 and $y = \frac{\sqrt{5}+2}{\sqrt{5}-2}$: find : y^2

35. If
$$\mathsf{x}\ = \dfrac{\sqrt{5}-2}{\sqrt{5}+2}$$
 and $y=\dfrac{\sqrt{5}+2}{\sqrt{5}-2}$: find : xy

36. If
$${\sf x}=rac{\sqrt{5}-2}{\sqrt{5}+2}$$
 and $y=rac{\sqrt{5}+2}{\sqrt{5}-2}$: find : x^2+y^2+xy

37. If m $= rac{1}{3-2\sqrt{2}}$ and $n=rac{1}{3+2\sqrt{2}}$ find :

(i) m^2 (ii) n^2 (iii) mn

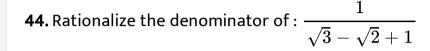
- Watch Video Solution

- **38.** If $x=2\sqrt{3}+2\sqrt{2}$ find :

 - Watch Video Solution

- **39.** If $x=2\sqrt{3}+2\sqrt{2}$ find :
- $x+rac{1}{x}$
 - Watch Video Solution

$$\left(x+rac{1}{x}
ight)^2$$


40. If $x=2\sqrt{3}+2\sqrt{2}$ find :

41. If x =1 $-\sqrt{2}$ find the value of $\left(x-\frac{1}{x}\right)^3$

42. If
$$\mathsf{x}$$
 =5 $-2\sqrt{6}$ find : $x^2+\frac{1}{x^2}$

$$rac{1}{3-2\sqrt{2}}-rac{1}{2\sqrt{2}-\sqrt{7}}+rac{1}{\sqrt{7}-\sqrt{6}}-rac{1}{\sqrt{6}-\sqrt{5}}+rac{1}{\sqrt{5}-2}=5$$

Watch Video Solution

45. If $\sqrt{2}=1.4$ and $\sqrt{3}$ = 1.7 find the value of each of the correct to one decimal place:

$$\frac{1}{\sqrt{3}-\sqrt{2}}$$

46. If $\sqrt{2}=1.4$ and $\sqrt{3}$ = 1.7 find the value of each of the correct to one decimal place:

$$\frac{1}{3+2\sqrt{}}$$

47. If
$$\sqrt{2}=1.4$$
 and $\sqrt{3}$ = 1.7 find the value of each of the correct to one decimal place:

$$\frac{2-\sqrt{3}}{\sqrt{3}}$$

48. Evalutate : $\frac{4-\sqrt{5}}{4+\sqrt{5}} + \frac{4+\sqrt{5}}{4-\sqrt{5}}$

49. If $\frac{2+\sqrt{5}}{2-\sqrt{5}}$ =x and $\frac{2-\sqrt{5}}{2+\sqrt{5}}$ =y , find the value of x^2-y^2 .

watch video Solution

Exercise 1 D

1. Simplify:
$$\frac{\sqrt{18}}{5\sqrt{18} + 3\sqrt{72} - 2\sqrt{162}}$$

2. Simplify:
$$\frac{\sqrt{x^2 + y^2} - y}{x - \sqrt{x^2 + y^2}} \div \frac{\sqrt{x^2 + y^2} + x}{\sqrt{x^2 + y^2} + y}$$

3. Evaluate, Correct to one place to decimal, the expression

$$\frac{5}{\sqrt{20}-\sqrt{10}}$$
, if $\sqrt{5}=22$ and $\sqrt{10}=3.2$

4. If x =
$$\sqrt{3} - \sqrt{2}$$
 find the value of

$$x + \frac{1}{x}$$

5. If
$${\sf x}$$
 = $\sqrt{3}-\sqrt{2}$ find the value of $x^2+rac{1}{x^2}$

6. If
$$x = \sqrt{3} - \sqrt{2}$$
 find the value of

$$x^3+rac{1}{x^3}$$

7. If $x = \sqrt{3} - \sqrt{2}$ find the value of

$$x^3 + rac{1}{x^3} - 3\left(x^2 + rac{1}{x^2}
ight) + x + rac{1}{x}$$

- 8. State true or false:
- (i) Negative of an irrational number is irrational.
- (ii) The product of a non-zero rational number and an irrational number is a rational number.
 - Watch Video Solution

- **9.** Draw a line segment of length $\sqrt{3}$ cm.
 - Watch Video Solution

10. Draw a line segment of length $\sqrt{8}$ cm.

11. Solve :
$$\frac{4-\sqrt{5}}{4+\sqrt{5}}+\frac{2}{5+\sqrt{3}}+\frac{4+\sqrt{5}}{4-\sqrt{5}}$$

 $x^3 + \frac{1}{x^3} = 52$, if $x = 2 + \sqrt{3}$

$$x^2+rac{1}{x^2}=34$$
 , if x =3 +2 $\sqrt{2}$

14. Show that :

$$rac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}+rac{2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=11$$

15. Show that x is irrational if:

$$x^{2} = 6$$

16. Show that x is irrational if:

$$x^2 = 0.009$$

17. Show that x is irrational if:

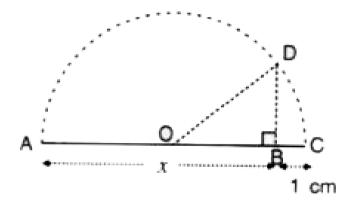
$$x^2 = 27$$

18. Show that x is rational if:

$$x^2 = 16$$

19. Show that x is rational if:

$$x^2 = 0.0004$$


20. Show that x is rational if:

$$x^2=1rac{7}{9}$$

0

Watch Video Solution

21. Using the following figure show that $BD=\sqrt{x}$

0

Watch Video Solution

Properties Of Rational And Irrational Numbers 3 Marks Questions

1. Is zero a rational number? Can it be written in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$?

2. Without doing any actual division, find which of the following rational numbers have terminating decimal representation :

(i)
$$\frac{7}{16}$$
 (ii) $\frac{23}{125}$ (iii) $\frac{9}{14}$

3. State, whether the following numbers are rational or not:

(i)
$$\left(2+\sqrt{2}\right)^2$$
 (ii) $\left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right)$

(iii)
$$\left(\frac{\sqrt{7}}{5\sqrt{2}}\right)^2$$

4. Find the square of:

- (i) $\frac{3\sqrt{5}}{5}$ (ii) $3 + 2\sqrt{5}$
 - Watch Video Solution

- **5.** Write a pair of irrational number whose product is rational.
 - Watch Video Solution

- 6. Compare:
- (i) $\sqrt[6]{15}$ and $\sqrt[4]{12}$ (ii) $\sqrt{24}$ and $\sqrt[3]{25}$
 - Watch Video Solution

Properties Of Rational And Irrational Numbers 4 Marks Questions

1. Arrange $-\frac{5}{9}$, $\frac{7}{12}$, $-\frac{2}{3}$ and $\frac{11}{18}$ in the ascending order of their magnitudes. Also, find the difference between the largest and the smallest of these rational numbers. Express this difference as a decimal fraction correct to one decimal place.

2. Given Universal set
$$= \left\{ -6, -5\frac{3}{4}, -\sqrt{4}, \frac{-3}{5}, \frac{-3}{8}, 0, \frac{4}{5}, 1, 1\frac{2}{5}, \sqrt{8}, 3.01, \pi, 8.47 \right\}$$

From the given set, find :

(i) Set of rational numbers

- (ii) Set of irrational numbers
- (iii) Set of integers
- (iv) Set of non-negative integers.
 - Watch Video Solution

3. Prove that $3-\sqrt{2}$ is irrational.

- **4.** Write of pair of irrational numbers whose difference is irrational.
 - Watch Video Solution

- 5. Write in ascending order:
- (i) $3\sqrt{5}$ and $4\sqrt{3}$
- (ii) $2\sqrt[3]{5}$ and $3\sqrt[3]{2}$
- (iii) $6\sqrt{5}$, $7\sqrt{3}$ and $8\sqrt{2}$
 - Watch Video Solution

- **6.** Insert five irrational numbers between $2\sqrt{5}$ and $3\sqrt{3}$.
 - Watch Video Solution

- 7. Simplify each of the following:
- (i) $\sqrt[5]{16} \times \sqrt[5]{2}$ (ii) $\frac{\sqrt[4]{243}}{\sqrt[4]{3}}$
- (iii) $\left(3+\sqrt{2}\right)\left(4+\sqrt{7}\right)$ (iv) $\left(\sqrt{3}-\sqrt{2}\right)^2$
 - Watch Video Solution

Surds Or Radicals 3 Marks Questions

1. State, with reason, which of the following are surds and which are not:

(i)
$$\sqrt{180}$$
 (ii) $\sqrt[3]{64}$ (iii) $\sqrt[3]{25} \times \sqrt[3]{40}$

- **2.** Write the lowest rationalising factor of :
- (i) $5\sqrt{2}$ (ii) $\sqrt{18}-\sqrt{50}$ (iii) $\left(2\sqrt{2}+2\sqrt{3}\right)$
 - Watch Video Solution

- **3.** Rationalize the denominator of :
- (i) $\frac{2\sqrt{3}}{\sqrt{5}}$ (ii) $\frac{1}{\sqrt{3}-\sqrt{2}}$
 - Watch Video Solution

4. If
$$x = 5 - 2\sqrt{6}$$
, find: $x^2 + \frac{1}{x^2}$

A. 98

B. 77

C.89

D. 44

Answer: A

- 5. Simplify : $\frac{\sqrt{18}}{5\sqrt{18}+3\sqrt{72}-2\sqrt{162}}$
 - Watch Video Solution

6. Simplify: $\frac{\sqrt{x^2 + y^2} - y}{x - \sqrt{x^2 - y^2}} \div \frac{\sqrt{x^2 - y^2} + x}{\sqrt{x^2 + y^2} + y}$

$$rac{5}{\sqrt{20}-\sqrt{10}}, \;\; ext{if} \;\; \sqrt{5}=22 \;\; ext{and} \;\; \sqrt{10}=3.2$$

7. Evaluate, Correct to one place to decimal, the expression

$$\frac{14}{5\sqrt{3}-\sqrt{5}}$$

8. Rationalize the denominator:

9. Rationalize the denominator and simplify to find the value of $\frac{4}{\sqrt{5}+\sqrt{3}}$, given that

$$\sqrt{5} = 2.236$$
 and $\sqrt{3} = 1.732$

Surds Or Radicals 4 Marks Questions

1. Find the values of a and b in each of the

$$\frac{5 + 3\sqrt{2}}{5 - 3\sqrt{2}} = a + b\sqrt{2}$$

2. Simplify:

$$rac{\sqrt{2}}{\sqrt{6}-\sqrt{2}}-rac{\sqrt{3}}{\sqrt{6}+\sqrt{2}}$$

3. If
$$x=\dfrac{\sqrt{5}-2}{\sqrt{5}+2}$$
 and $y=\dfrac{\sqrt{5}+2}{\sqrt{5}-2}$: find

(iii) xy (iv)
$$x^2 + y^2 + xy$$

(i) x^2 (ii) y^2

4. If
$$x=2\sqrt{3}+2\sqrt{2}$$
, find :

(i)
$$\frac{1}{x}$$
 (ii) $x + \frac{1}{x}$ (iii) $\left(x + \frac{1}{x}\right)^2$

$$rac{1}{3-\sqrt{8}}-rac{1}{\sqrt{8}-\sqrt{7}}+rac{1}{\sqrt{7}-\sqrt{6}}-rac{1}{\sqrt{6}-\sqrt{5}}+rac{1}{\sqrt{5}-2}=5$$

- **6.** Rationalize the denominator of : $\frac{1}{\sqrt{3}-\sqrt{2}+1}$
 - Watch Video Solution

- 7. If $\sqrt{2}=1\cdot 4$ and $\sqrt{3}=1\cdot 7$, find the value of $\frac{1}{\sqrt{3}-\sqrt{2}}$, correct to one place of decimal.
 - Watch Video Solution

8. Show that:

$$\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{2\sqrt{3}}{\sqrt{3} - \sqrt{2}} = 11$$