

MATHS

BOOKS - HT Olympiad Previous Year Paper

AREAS OF PARALLELOGRAMS AND TRIANGLES

Mathematical Reasoning

1. In the given figure, ABCD is a parallelogram,

 $AE \perp DC$ and $EF \perp AD$. If AD = 15 cm

CD=21 cm and CF = 7 cm, then find AE.

A. 10 cm

B. 7 cm

C. 8 cm

D. 5 cm

Answer: D

2. Find the area of a trapezium ABCD in which

$$AB\mid\ \mid\ DC,AB=77cm,BC=25cm,$$

$$CD = 60cm$$
 and $DA = 26cm$.

A. 204 cm²

B. 1644 cm^2

C. 1645 cm^2

D. 1600 cm^2

Answer: B

3. The diagonals of a parallelogram divides it into two-

A. Triangles of equal area

B. Congruent triangles

C. Equal parallelograms

D. Both (A) and (B)

Answer: D

Watch Video Solution

4. In the given figure, if ABCD is a parallelogram and E is the mid-point of BC, then $ar(\Delta DEC)=k$ ar(ABCD). Find k.

A. 2

B. $\frac{1}{4}$

c.
$$\frac{1}{2}$$

$$\mathsf{D.}\;\frac{2}{3}$$

Answer: B

Watch Video Solution

5. In the given figure, PQR is a triangle and T is the mid-point of PS. Then area of $\Delta TQR=k$ area of ΔPQR . Find K.

A. 2

 $\mathsf{B.}\;\frac{1}{4}$

C. 4

 $\mathrm{D.}\,\frac{1}{2}$

Answer: D

6. In the given figure, if $ar(\Delta ABC)=28~{
m cm}^2 {
m then} ar(AEDF)$ =

A. 21 cm^2

B. 18 cm^2

 $C. 16 \text{ cm}^2$

D. 14 cm^2

Answer: D

Watch Video Solution

7. In the given figure, ABCD is a quadrilateral with BD = 30 cm. If $AL \perp BD$ and $CM \perp BD$ such that AL = 15 cm and CM = 8 cm, then find

the area of quadrilateral ABCD.

 $A.\,345~\mathrm{cm}^2$

 $B.180 \text{ cm}^2$

 $\rm C.~100~~cm^2$

D.340 cm^2

Answer: A

Watch Video Solution

8. The midpoints of the sides of a triangle along with any of the vertices as the fourth point makes a parallelogram of area equal to

A.
$$rac{1}{2}$$
 area (ΔABC)

B.
$$\frac{1}{3}$$
 area (ΔABC)

C.
$$rac{1}{4}$$
 area (ΔABC)

D. area (ΔABC)

Answer: A

Watch Video Solution

$$AL \perp BC, AM \perp CD, AL = 4$$
 cm and

9. In the given figure, ABCD is a parallelogram,

AM=5 cm. If BC=6.5 cm then find CD.

- A. 5.2 cm
- B. 8.7 cm
- C. 6.5 cm
- D. 3.3 cm

Answer: A

Watch Video Solution

10. ABCD is a trapezium with parallel sides AB = a cm and DC = b cm, E and Fare the mid-points of the non-parallel sides. Find the ratio of ar(ABFE) and ar(EFCD).

A.
$$(3b + a) : (3a + b)$$

B.
$$(3a + b) : (3b + a)$$

C.
$$(2a + 3b)$$
: $(3a + b)$

D.
$$(3a + 2b) : (2a + 3b)$$

Answer: B

Watch Video Solution

11. ABCD is a rectangle with O as any point in its interior. If $ar(\Delta AOD)=3~{
m cm}^2$ and $ar(\Delta BOC)=6~{
m cm}^2$, then area of rectangle ABCD is

A. 9 cm^2

B. 12 cm^2

C. 15 cm^2

D. 18 cm^2

Answer: D

12. The diagonals AC and BD of a parallelogram ABCD intersect each other at O. PQ is a line through which meets BC at P and AD at Q. If ar (quad. ABPQ) = k ar (Parallelogram ABCD), then k = (quad. ABPQ)

- B. 4
- C. 3
- D. $\frac{1}{4}$

Answer: A

Watch Video Solution

13. Two parallelograms are on equal bases and between the same parallels.

The ratio of their areas is

A. 1:2

B. 1:1

C. 2: 1

D. 3:1

Answer: B

Watch Video Solution

If $ar(\Delta DPA)=15~{
m cm}^2$ and CD.

 $ar(\Delta APC) = 20 \;\; \mathrm{cm}^2$, then $ar(\Delta APB) =$

- A. 15 cm^2
 - $B.20 \text{ cm}^2$
 - $C.35 \text{ cm}^2$
 - $D.30 \text{ cm}^2$

Answer: C

Watch Video Solution

15. If AD is median of ΔABC and P is a point such that AC on

 $ar(\Delta PDC)$: $ar(\Delta ABC)$ is

then

 $ar(\Delta ADP) : ar(\Delta ABD) = 4:5$

A. 1:10

B. 10:1

D. 3:1

C. 1:3

Answer: A

16. The area of a trapezium whose parallel sides are 9 cm & 16 cm and the distance between these sides is 8 cm, is

- A. 60 cm^2
- $B.72 \text{ cm}^2$
- $C.56 \text{ cm}^2$
- D. 100 cm^2

Answer: D

Watch Video Solution

17. If E, F, G and Hare the mid-points of sides ofa parallelogram ABCD, then ar (EFGH) =

A.
$$\frac{1}{3}$$
 ar(ABCD)

B. ar(ABCD)

C.
$$\frac{1}{2}$$
 ar(ABCD)

D.
$$\frac{1}{4}$$
 ar(ABCD)

Answer: C

Watch Video Solution

Achievers Section Hots

- **1.** Read the statements carefully and write 'T' for true and 'F' for false.
- (a) Two parallelograms on the same base and between the same parallel lines are of unequal areas.
- (b) The ratio of area of rectangle and a

triangle having the same base and between the same parallel is 2:1

(c) The area of a parallelogram is the product of its base and the corresponding altitude.

A.
$${(a) \atop F} \ \ \, (b) \atop T \ \ \, F$$

B. ${(a) \atop T} \ \ \, (b) \atop T \ \ \, (c)$

C. ${(a) \atop T} \ \ \, (b) \atop F \ \ \, (c)$

D. ${(a) \atop F} \ \ \, (b) \atop T \ \ \, (c)$

Answer: D

Watch Video Solution

2. ABCD is a parallelogram, G is the point on AB such that AG = 2 GB, E is point on DC such that CE = 2DE and F is the point on BC such

that BF = 2FC. Then, match the following:

Column-II

P.
$$\operatorname{ar}\left(\operatorname{ADEG}\right)$$
 (i) $\frac{1}{6}$ $\operatorname{ar}\left(\operatorname{ABCD}\right)$

Q. $\operatorname{ar}\left(\Delta EGB\right)$ (ii) $\operatorname{ar}\left(\operatorname{GBCE}\right)$

R. $\operatorname{ar}\left(\Delta EFC\right)$ (iii) $\frac{1}{2}\operatorname{ar}\left(\Delta EBF\right)$

A.
$$rac{P}{(i)} rac{Q}{(ii)} rac{R}{(iii)}$$
B. $rac{P}{(ii)} rac{Q}{(i)} rac{R}{(iiii)}$
C. $rac{P}{(iii)} rac{Q}{(i)} rac{R}{(iii)}$

D.
$$egin{array}{cccc} P & Q & R \ (ii) & (iii) & (i) \end{array}$$

Answer: B

View Text Solution