© 'doubtnut

MATHS

BOOKS - HT Olympiad Previous Year Paper

CONSTRUCTIONS

Mathematical Reasoning

1. For which of the following conditions the construction of a triangle is NOT possible?
A. If two sides and one angle is given.
B. If two sides and included angle between them is given.
C. If three sides are given.
D. If two angles and side between them is given.

Answer: A

- Watch Video Solution

2. The construction of a $\Delta L M N$ in which $\mathrm{LM}=8 \mathrm{~cm}$,
$\angle L=45^{\circ}$ is possible when $(M N+L N)$ is \qquad
A. 6 cm
B. 7 cm
C. 9 cm
D. 5 cm

Answer: C

- Watch Video Solution

3. Which of the following angles CANNOT be constructed by using ruler and compass only?
A. 30°
B. 45°
C. 70°
D. 90°

Answer: C

- Watch Video Solution

4. The construction of a $\triangle P Q R$ in which $Q R=7 \mathrm{~cm}$ and
$\angle Q=50^{\circ}$ is NOT possible when (PQ - PR) is equal to
A. 4 cm
B. 6 cm
C. 9 cm
D. 3 cm

Answer: C
5. Which of the following options is INCORRECT?
A. An angle of 52.5° can be constructed.
B. A triangle $A B C$ can be constructed in which $A B=5$

$$
\mathrm{cm}, \angle A=45^{\circ} \text { and } B C+A C=5 \mathrm{~cm}
$$

C. A triangle $A B C$ can be constructed in which $B C=6$

$$
\mathrm{cm}, \angle C=30^{\circ} \text { and } A C-A B=4 \mathrm{~cm}
$$

D. A triangle $A B C$ can be constructed in which

$$
\angle B=60^{\circ}, \angle C=45^{\circ} \text { and } A B+B C+A C=12 \mathrm{~cm}
$$

Answer: B

Achievers Section Hots

1. Following are the steps of construction of a $\Delta A B C$ in which $\mathrm{AB}=6 \mathrm{~cm}, \angle A=45^{\circ}$ and $A C-B C=4 \mathrm{~cm}$.

Arrange them and select the CORRECT option.
(i) Draw $\mathrm{AB}=6 \mathrm{~cm}$
(ii) Join $B C$ to obtain the required triangle $A B C$
(iii)Draw $\angle B A X=60^{\circ}$
(iv) From ray $A X$, cut offline segment $A D=A C-B C=4 \mathrm{~cm}$
(V) Join BD
(vi) Draw the perpendicular bisector of BD which cuts $A X$ at C.
A. $(i) \rightarrow(i i i) \rightarrow(i v) \rightarrow(v) \rightarrow(v i) \rightarrow(i i)$
B. $(i i i) \rightarrow(i) \rightarrow(v i) \rightarrow(i v) \rightarrow(i i) \rightarrow(v)$
C. $(i i i) \rightarrow(i) \rightarrow(i i) \rightarrow(v) \rightarrow(i v) \rightarrow(v i)$
D. $(i i i) \rightarrow(i i) \rightarrow(i v) \rightarrow(i) \rightarrow(v i) \rightarrow(v)$

Answer: A

- Watch Video Solution

2. State 'T' for true and 'F' for false and select the correct option.
(i) A triangle whose sides measures $8 \mathrm{~cm}, 4 \mathrm{~cm}$ and 12 cm can be possible.
(ii) It is possible to construct an angle of 57.5° using ruler and compass only.
(iii) It is possible to construct a $\triangle X Y Z$ in which $\angle X=60^{\circ}, \angle Y=100^{\circ}$ and $\angle Z=20^{\circ}$.
i $\quad i i \quad i i$
A.
$T \quad F T$
i $i i \quad i i$
B.
$F \quad F \quad T$
C. $\begin{array}{lll}i & i i & i i i \\ F & T & T\end{array}$
D. ${ }^{i} \quad i i \quad i i i$
$T T F$

Answer: B

- Watch Video Solution

3. Let $A B C$ be a triangle in which $B C=5 \mathrm{~cm}$, $\angle B=60^{\circ}$ and $A C+A B=7.5 \mathrm{~cm}$. Given below are the steps of constructing the triangle ABC. Which of the
following steps is INCORRECT?
Step 1: Draw a line segment BC of length 5 cm .
Step II : Draw an $\angle X B C=60^{\circ}$ at point B of line segment $B C$.

Step III : Cut off PB $=3.5 \mathrm{~cm}$ on the ray BX
Step IV : Join PC.
Step V : Draw \perp bisector of BC which intersect ray BX at
A. Join AC.

Step VI : ABC is the required triangle.
A. Step II only
B. Step III only
C. Step II and V
D. Step III and V

Answer: D

- Watch Video Solution

4. Following are the steps of construction of a rectangle

ABCD whose adjacent sides are of lengths 5 cm and 3.5
cm . Arrange them and select the CORRECT option.
(P) Draw a line segment BC of length 5 cm .
(Q) With A as centre, draw an arc of radius 5 cm .
(R) Draw an $\angle X B C=90^{\circ}$ at point B of line segment BC
(S) Cut a line segment $A B=3.5 \mathrm{~cm}$ on $\overline{B X}$
(T) With C as centre, draw an arc of radius 3.5 cm which intersects the arc at D.
(U) Join AD and CD.
A. $(P) \rightarrow(S) \rightarrow(Q) \rightarrow(R) \rightarrow(U) \rightarrow(T)$
B. $(P) \rightarrow(R) \rightarrow(S) \rightarrow(Q) \rightarrow(T) \rightarrow(U)$
C. $(P) \rightarrow(S) \rightarrow(R) \rightarrow(Q) \rightarrow(T) \rightarrow(U)$
D. $(P) \rightarrow(Q) \rightarrow(R) \rightarrow(S) \rightarrow(U) \rightarrow(T)$

Answer: B

- Watch Video Solution

5. Step I \& Step V are in correct order while constructing an equilateral triangle one of whose altitudes measures 5 cm . Which of the following options is CORRECT while arranging the remaining steps in CORRECT order?

Step 1: Draw a line XY.
(i) From $\angle P$, set off $\mathrm{PA}=5 \mathrm{~cm}$, cutting PQ at A .
(ii) From P, draw $P Q \perp X Y$.
(iii) Mark any point P on XY .

Step V : Construct $\angle P A B=30^{\circ}$ and $\angle P A C=30^{\circ}$, meeting $X Y$ at B and C respectively.
A. $(i) \rightarrow(i i) \rightarrow(i i i)$
B. $(i i i) \rightarrow(i i) \rightarrow(i)$
C. $(i i) \rightarrow(i) \rightarrow(i i i)$
D. $(i i i) \rightarrow(i) \rightarrow(i i)$

Answer: B

