

MATHS

BOOKS - HT Olympiad Previous Year Paper

COORDINATE GEOMETRY

Mathematical Reasoning

1. The linear equation x = 3y + 5 cuts the x-axis

at .

B.
$$(5, 0)$$

$$\mathsf{C.}\left(0,\,\frac{3}{5}\right)$$

D.
$$\left(\frac{3}{5},0\right)$$

Watch Video Solution

2. (2, 1) is a point, which belongs to the line

----**·**

A.
$$x = y$$

B.
$$y = x + 1$$

C.
$$2y = x$$

D.
$$xy = 1$$

Watch Video Solution

3. One set of ordered pair which belongs to a straight line represented by an equation y = 2x

A. (1, 1)

B. (2, 1)

C. (1, 2)

D. (3, 1)

Answer: A

Watch Video Solution

4. If (x + 7, 3) = (5, 6 + y), then the values of x

and y respectively are

B.
$$-3, -3$$

$$C. -2, -3$$

Watch Video Solution

5. The value of 'x' in the ordered pair (x, -8) if the ordinate of the pair is 4 more than the abscissa is _____.

A.-4

B.-8

C. - 12

D. 4

Answer: C

Watch Video Solution

6. Point P(-3, -4) lies in which quadrant?

A. I^{st} quadrant

- B. II^{nd} quadrant
- C. III^{rd} quadrant
- D. $IV^{\it th}$ quadrant

Watch Video Solution

7. The point at which the two coordinate axes meet is called the

A. Abscissa

- B. Ordinate
- C. Origin
- D. Quadrant

Watch Video Solution

8. If the coordinates of two points are A(3,4) and B(-2,5), then find the value of (abscissa of A) - (abscissa of B).

- **A.** 1
- B. 1
- C. 5
- D. -5

Watch Video Solution

9. of abscissa and ordinate of a point in the fourth quadrant are respectively.

$$A.(+,-)$$

$$B.(-,+)$$

$$C.(-,-)$$

$$D.(+,+)$$

Watch Video Solution

10. Two points having same abscissa but different ordinates lie on $x-a\xi s$ (b) $y-a\xi s$

a line parallel to $y-a\xi s$ (d) a line parallel to

 $x - a\xi s$

A. x-axis

B. y-axis

C. a line parallel to y-axis

D. a line parallel to x-axis

Answer: C

11.

The coordinates of point L are _____.

A.
$$(-3, 2)$$

B.
$$(3, -2)$$

D.
$$(-3, -2)$$

Answer: D

Watch Video Solution

12.

Sum of ordinates of point M and N is _____.

A. 2

- B. 4
- $\mathsf{C.}-5$
- D.-6

13.

The point whose abscissa is 2 less than the ordinate is _____.

A. M

B. N

C. L

D. P

Watch Video Solution

14.

The difference between abscissae of P and N is

____·

- **A.** 0
- B. 5
- C. 1
- D. 3

Watch Video Solution

15. The area of the triangle formed by the points P (0, 1), Q (0, 5) and R (3, 4) is _____.

- A. 16 sq. units
- B. 8 sq. units
- C. 4 sq. units
- D. 6 sq. units

Answer: D

- 16. The perpendicular distance of the point
- (-7, 8) from the x-axis is ____ units.

- **A.** 7
- B. 8
- C. -7
- D. 1

Watch Video Solution

17. of abscissa and ordinate of a point in the fourth quadrant are respectively.

$$A. +, +$$

$$C.+, -$$

D.
$$-, +$$

Watch Video Solution

Achievers Section Hots True False

1. (i) Origin is the only point which lies on both the axes.

(ii) The point $(2,\,-2)$ and point $(\,-2,2)$ lies in the same quadrant.

(iii) If a point lies on y-axis at a distance 2 units from x-axis, then its coordinates are (2, 0).

(iv) Abscissa of a point is positive in I quadrant and also in II quadrant.

A.
$$\frac{(i)}{F}$$
 $\frac{(ii)}{T}$ $\frac{(iii)}{F}$ $\frac{(iv)}{T}$

B. $\frac{(i)}{T}$ $\frac{(ii)}{F}$ $\frac{(iii)}{F}$ $\frac{(iii)}{F}$ $\frac{(iv)}{F}$

C. $\frac{(i)}{F}$ $\frac{(iii)}{T}$ $\frac{(iiii)}{T}$ $\frac{(iv)}{T}$

D. $\frac{(i)}{T}$ $\frac{(ii)}{F}$ $\frac{(iii)}{T}$ $\frac{(iv)}{F}$

Answer: B

Watch Video Solution

Achievers Section Hots

1.

In the given figure, PQRS is a rhombus whose diagonal PR and QS are along coordinate axes and PR = 12 units and QS = 6 units.

Now, if T is a point which is 5 units right and 2 units above S, then find

(i) sum of abscissae of P and T.

(ii) sum of ordinates of Q, R and T.

A.
$$egin{pmatrix} ext{(i)} & ext{(ii)} \ -1 & 2 \end{bmatrix}$$

B.
$$\frac{(i)}{1}$$
 $\frac{(ii)}{-2}$

c.
$$\frac{(i)}{1}$$
 $\frac{(ii)}{2}$

D.
$$\frac{(i)}{-1} \frac{(ii)}{-2}$$

Answer: A

2. Match the following.

Column-I

Column-II

- (P) The area of ΔOAB (i) 14 sq. units with O (0, 0), A (4, 0) and B (0, 8) is
- (Q) The area of ΔABC (ii) 16 sq. units with A (2, 0), B (6, 0) and C (4, 6) is
- (R) The area of $\triangle OAB$ (iii) 12 sq. units with O(0,0), A(7,0) and B(0,4) is
- (A) (P) \rightarrow (ii), (Q) \rightarrow (i), (R) \rightarrow (iii)
- (B) (P) \rightarrow (iii), (Q) \rightarrow (i), (R) \rightarrow (ii)
- (C) (P) \rightarrow (iii), (Q) \rightarrow (ii), (R) \rightarrow (i)
- (D) (P) \rightarrow (ii), (Q) \rightarrow (iii), (R) \rightarrow (i)

