©゙" doubtnut

India's Number 1 Education App

PHYSICS
 BOOKS - HC VERMA
 DESCRIBING MOTION

Question Bank

1. Consider the situation shown In Figure 2.3.

What is the position of a particle when it is at
P_{1} and when it is at P_{2} ?

- View Text Solution

2. Consider the situation shown In Figure 2.3.Are the two positions the same?

D View Text Solution

3. Consider the situation shown In Figure
2.3.Are the two distances of the particle from
the particle from the origin the same ?

D View Text Solution
4. The position of a particle going along a straight line is $x=50 \mathrm{~m}$ at 10.30 a.m. and $x=55 \mathrm{~m}$ at 10.35 a.m.

D View Text Solution

5. Convert $15 \mathrm{~m} / \mathrm{s}$ into km / h

D View Text Solution

6. A boy throws a ball up and catches it when
the ball falls back. In which part of the motion
is the ball decelerating ?

- View Text Solution

7. Figure 2.12 shows distance-time graphs of two objects A and B. Which object is moving with a greater speed when both are moving ?

Fig. 2.12

D View Text Solution

8. Two friends A and B started from the same location and went 30 km along a road in the
same direction. Figure 2.13 shows their motions through graphs. Answer. The following question.When did a start ?

Fig. 2.13

D View Text Solution
9. Two friends A and B started from the same
location and went 30 km along a road in the same direction. Figure 2.13 shows their
motions through graphs. Answer. The following question.When did B start ?

Fig. 2.13

D View Text Solution

10. Two friends A and B started from the same location and went 30 km along a road in the same direction. Figure 2.13 shows their motions through graphs. Answer. The
following question.Did any of them move with

uniform speed?

Fig. 2.13

D View Text Solution

11. The velocity-time graph of a particle moving along a straight line is shown in Figure 2.W7.Is
the motion uniform?

Fig. 2.W7

D View Text Solution

12. The velocity-time graph of a particle moving along a straight line is shown in

Figure 2.W7.

Does the particle change its direction of

motion?

Fig. 2.W7

D View Text Solution

13. A particle is travelling with a constant speed. This means
A. its position remains constant as time passes
B. It covers equal distances in equal time intervals
C. its acceleration is zero
D. It does not charge its direction of motion

Answer: B

14. A particle moves with a uniform velocity.
A. The particle must be at rest.
B. The particle moves along a curved path.
C. The particle moves along a circle.

D. The particle moves along a straight line

Answer: D

D View Text Solution

15. If a particle covers equal distances in equal
time intervals, It is said to
A. be at rest
B. move with a uniform speed
C. move with a uniform velocity
D. move with a uniform acceleration

Answer: B

D View Text Solution
16. A quantity has a value of $-6.0 \mathrm{~m} / \mathrm{s}$. It may be the
A. speed of a particle
B. velocity of a particle
C. acceleration of a particle
D. position of a particle

Answer: B

D View Text Solution
17. The area under a graph between two quantities is given in the unit m / s. The quantities are
A. speed and time
B. distance and time
C. acceleration and time
D. velocity and time

Answer: C

D View Text Solution
18. The area under a speed -time graph is represented by the unit
A. m
B. m^{2}
C. m^{3}
D. m^{-1}

Answer: A

- View Text Solution

19. The velocity-time graph of a particle is not a straight line. Its acceleration is
A. zero
B. constant
C. negative
D. variable

Answer: D

D View Text Solution
20. If a particle moves with a constant speed,
the distance-time graph is
A. straight line
B. circle
C. stairlike line
D. polygon

Answer: A

- View Text Solution

21. The distance-time graph of an object moving in a fixed direction is shown in figure 2.E1.

The object
A. is at rest
B. moves with a constant velocity
C. moves with a variable velocity

D. moves with a constant acceleration

Answer: B

D View Text Solution

22. The distance-time graph of an object shown in figure 2.E2.

Fig. 2.E2

The object
A. is at rest
B. moves with a constant speed
C. moves with a constant velocity
D. moves with a constant acceleration

Answer: A

D View Text Solution
23. The speed-time graph of an object moving
in a fixed direction is shown in figure 2.E3.

Fig. 2.E3

The object
A. is at rest
B. moves with a constant speed
C. moves with a constant velocity
D. moves with a constant acceleration

Answer: D

D View Text Solution

24. The speed-time graph of an object moving
in a fixed direction is shown in Figure 2.E4.

Fig. 2.E4

The object
A. is at rest
B. movies with fluctuating speed
C. moves with a constant speed
D. moves with a nonzero acceleration

Answer: C

25. In circular motion the

A. direction of motion is fixed

B. direction
of
motion
changes

continuously
C. acceleration is zero
D. velocity is constant

Answer: B
26. Mark the statement true (T) or false (F).If A moves with respect to B then B moves with respect to A.

D View Text Solution

27. Mark the statement true (T) or false
(F).Scalar quantities can be added according to the rules of arithmetic.
28. Mark the statement true (T) or false (F).

The magnitude of the displacement of a particle can be greater than the distance traversed.

D View Text Solution

29. Mark the statement true (T) or false (F).

The magnitude of the displacement of a particle can be equal to the distance traversed.
30. Mark the statement true (T) or false
(F).Vector quantities can be added according to the rules of arithmetic.

D View Text Solution

31. Mark the statement true (T) or false (F).The
displacement of a particle in a 10-minute interval must be zero.
32. Mark the statement true (T) or false (F).A particle is known to be at rest at time $\mathrm{t}=0$. Its acceleration at $\mathrm{t}=0$ must be zero.

D View Text Solution

33. Mark the statement true (T) or false (F).For a particle moving with a constant velocity, the distance- time graph is a straight line.
34. Mark the statement true (T) or false (F). For a particle moving with a constant acceleration along a straight line, the velocity- time graph is a straight line.

D View Text Solution

35. A car moves 100 m due east and then 25 m due west.What is its displacement?
36. A person walks along the sides of a square
field. Each side is 100 m long. What is the maximum magnitude of displacement of the person in any time interval?

D View Text Solution

37. In the hare-tortoise race, the hare ran for 2
min at a speed of $7.5 \mathrm{~km} / \mathrm{h}$, slept for 56 min and aging ran for 2 min al a speed of $7.5 \mathrm{~km} / \mathrm{h}$.

Find the average speed of the hare in the race.

D View Text Solution

38. A boy leaves his house at 6.30 a.m. for his
school. The school is 2 km away and classes
start at 10.00 a.m. If he walks at a speed of 3
km / h for the second kilometre to reach just in time ?

D View Text Solution
39. A bus moves at a uniform speed v_{1} for some
time and then with a uniform speed v_{2}. The distance-time table is given below. Plot the corresponding distance-time graph and answer the following questions.

Time (min) Distance (km)

Find the values of v_{1} and v_{2}.

D View Text Solution
40. A bus moves at a uniform speed v_{1} for some
time and then with a uniform speed v_{2}. The distance-time table is given below. Plot the corresponding distance-time graph and answer the following questions .

Time (min) Distance (km)

When did the bus change its speed?

- View Text Solution

41. A bus moves at a uniform speed v_{1} for some
time and then with a uniform speed v_{2}. The distance-time table is given below. Plot the corresponding distance-time graph and answer the following questions.

Time (min) Distance (km)

What is the average speed for the complete journey?

D View Text Solution

42. A bicycle increases its velocity from 10 km / h to $15 \mathrm{~km} / \mathrm{h}$ in 6 seconds. Calculate its acceleration.

D View Text Solution
43. A bullet hits a wall with a velocity of $20 \mathrm{~m} / \mathrm{s}$
and penetrates it up to a distance of 5 cm .

Find the deceleration of the bullet in the wall.

D View Text Solution

44. A train starts from a station and moves
with a constant acceleration for 2 minutes. If it
covers a distance of 400 m in this period, find the acceleration.
45. A bicycle moves with a constant velocity of
$5 \mathrm{~km} / \mathrm{h}$ for 10 minutes and then decelerates at the rate $1 k \frac{m}{h^{2}}$, till it stops. Find the total distance covered by the bicycle.

- View Text Solution

46. Figure 2.E6 shows the speed-time graph of a bus.

Fig. 2.E6

In which period is the bus accelerating ?

D View Text Solution

47. Figure 2.E6 shows the speed-time graph of a bus.

Fig. 2.E6

In which period is the bus decelerating ?

D View Text Solution
48. Figure 2.E6 shows the speed-time graph of
a bus.

Fig. 2.E6

What is the distance covered during its deceleration?

- View Text Solution

49. Figure 2.E6 shows the speed-time graph of
a bus.

Fig. 2.E6

What is the distance covered during it deceleration?

- View Text Solution

50. The velocity-time graph of a particle moving along a straight line is given in Figure

2E7.Does the particle ever come to rest ? If so , when?

Fig. 2.E7

D View Text Solution

51. The velocity-time graph of a particle moving along a straight line is given in Figure

2E7.Does the particle turn around ?If so , when

?

Fig. 2.E7

D View Text Solution

