

PHYSICS

BOOKS - HC VERMA

FORCE AND ACCELERATION

Question Bank

1. Find the values of F_1 and F_2 in example 3.3.

2. A cube of edge length 5 cm is placed inside a liquid, The pressure at the centre of a face is 12Pa. Find the force exerted by the liquid on this face.

View Text Solution

3. A bullet of mass 20 g moving with a speed of 120 m/s hits a thick muddy wall and penetrates into it. It takes 0.03 s to stop in the

wall find the force exerted by the bullet on the wall,

View Text Solution

4. An unbalanced force acts on a body. The body

A. must remain at rest

B. must move with uniform velocity

C. must be accelerated

D. must move along a circle

Answer: C

View Text Solution

- **5.** If a body is not accelerated.
 - A. no force acts on it
 - B. no unbalanced force acts on it
 - C. the resultant force is not zero
 - D. a single force acts on it

Answer: B

6. If no force acts on a body, it will

A. get deshaped

B. move with increasing speed

C. either remain at rest or move in a

straight line

D. break

Answer: C

7. By applying a force of 1N, one can hold a body whose mass is approximately equal to

A. 100 mg

B. 100 g

C. 1 kg

D. 10 kg

Answer: B

8. The force of friction between two bodies is

A. parallel to the contact surface

B. perpendicular to the contact surface

C. inclined at 30° to the contact surface

D. inclined at 60° to the contact surface

Answer: A

- 9. A coin flicked across a table stops because
 - A. no force acts on it
 - B. it is very heavy
 - C. the table exerts a frictional force on it
 - D. the earth attracts it

Answer: C

10. The speed of a falling body increases continuously. This is because

A. no force acts on it

B. it si very light

C. the air exerts a frictional force on it

D. the earth attracts it

Answer: D

11. Which of the following has the largest inertia?

A. A pin

B. An inkpot

C. Your physics book

D. Your body

Answer: D

12. When a bus starts suddenly, the passengers standing on it lean backwards in the bus. This is an example of

- A. Newton's first law
- B. Newton's second law
- C. Newton's third law
- D. none of Newton's laws

Answer: A

13. A force of a given magnitude acts on a body . The acceleration of the body depends on the

A. mass of the body

B. volume of the body

C. density of the body

D. shape of the body

Answer: A

14. If a constant force acts on a body initially kept at rest, the distance moved by the body in time is proportional to

A.t

 $B. t^2$

 $\mathsf{C}.\,t^3$

D. t^4

Answer: B

15. The momentum of a body of given mass is proportional to its

- A. volume
- B. shape
- C. speed
- D. colour

Answer: C

16. The mass and speed of four bookies are:

-		
Body	Mass	Speed
A	1 kg	10 m/s
В	2 kg	9 m/s
C	3 kg	8 m/s
D	4 kg	7 m/s

The body with the largest magnitude of momentum is

A. A

B. B

C. C

D. D

Answer: D

View Text Solution

- **17.** The principle of conservation of linear momentum states that the linear momentum of a system
 - A. cannot be changed
 - B. cannot remain constant
 - C. can be changed only if internal forces

act

D. can be changed only if external forces act

Answer: D

View Text Solution

18. Action-reaction forces

A. act on the same body

B. act on different bodies

C. act along different lines

D. act in the same direction

Answer: B

View Text Solution

19. Consider a porter standing on a platform with a suitcase which presses his head with a force of 200 N. take this force as action. The reaction force is exerted by

A. the head on the suitcase

- B. the earth on the suitcase
- C. the earth on the poter
- D. the suitcase on the earth

Answer: A

figure 3.E1 shows the displacement -time graphs for the four particles, A, B,C and D. An

unbalanced force is acting on the particle

A. A

B.B

C. C

D. D

Answer: D

View Text Solution

21. Pascal is a unit of

A. pressure

B. force

C. linear momentum

D. energy

Answer: A

View Text Solution

- 22. The buoyant force on a body acts in a
 - A. vertically downward direction
 - B. vertically upward direction
 - C. horizontal direction
 - D. direction between the horizontal and

the vertical

Answer: B

23. A body floats in a liquid if the buoyant force is

A. zero

B. greater than its weight

C. less than its weight

D. equal to its weight

Answer: D

View Text Solution

24. Mark the statement true (T) or false (F):The speed of a particle remains constant. This means that no unbalanced force acts on it.

View Text Solution

25. Mark the statement true (T) or false (F):No unbalanced force acts on a particle. The speed

of the particle must remain constant.

26. Mark the statement true (T) or false (F): A spring can pull an object as well as push an object.

27. Mark the statement true (T) or false (F):A string can pull an object as well as push an

object.

28. Mark the statement true (T) or false (F):A particle attracts the earth with a force equal to the weight of the particle.

29. Mark the statement true (T) or false (F): A ball moving on a horizontal surface stops

because on the force of friction.

View Text Solution

30. Mark the statement true (T) or false (F):It is easier to catch a fast-moving ball with the arms kept nearly still.

View Text Solution

31. Mark the statement true (T) or false (F): A particle starts from rest under the action of a

constant force. The graph of distance versus time is a straight line.

View Text Solution

32. Mark the statement true (T) or false (F):Action and reaction forces act on the same object.

33. Mark the statement true (T) or false (F):Any pair of equal and opposite forces forms an action -reaction pair.

View Text Solution

34. Mark the statement true (T) or false (F): The preseuros it all poinic in a liquid at the same horizontal plane are equal.

35. Mark the statement true (T) or false (F): After diving into a swimming pool, as one moves up, the pressure of water incrasos.

View Text Solution

36. Mark the statement true (T) or false (F):

Pascal and $\frac{N}{m^2}$ represent the same unit.

37. Mark the statement true (T) or false (F): Pressure has magnitude as well as direction.

View Text Solution

38. A boy is wearing a shirt of mass 150 g. How much force is he exerting on the dress? Do not forget ot state the direction.

39. Your physics book has a mass of 400 g. It is kept on a horizontal table. Taking g $=10m/s^2$, find the force (both magnitude and direction)exerted by the table on the physics book

View Text Solution

40. Your physics book has a mass of 400 g. It is kept on a horizontal table. Taking g $=10m/s^2$, find the force (both magnitude

and direction)exerted by ,the physics book on the table .

View Text Solution

41. Your physics book has a mass of 400 g. It is kept on a horizontal table. Taking g $=10m/s^2$, find the force (both magnitude and direction)exerted by, the earth on the physics book.

42. Your physics book has a mass of 400 g. It is kept on a horizontal table. Taking g $=10m/s^2$, find the force (both magnitude and direction)exerted by the physics book on the earth.

43. A force of 10 N acts on a particle of mass 0.4 kg. Find the acceleration of the particle.

44. When a body is dropped from a height, it falls with an acceleration of $10m/s^2$. If its mass is 250 g, how much force is exerted on it downwards? Who exerts this force on the body?

View Text Solution

45. Figure 3.E2 shows the velocity -time graph for a particle moving in a fixed direction. Find

the acceleration of the particle.

46. A force produces an acceleration of $1.5m \, / \, s^2$ in a disk. Three such disks are tied

together and the same force is applied on the combination. What will be the acceleration?

View Text Solution

47. A constant force of 12 N acts on a body for 4s. Find the change in the linear momentum of the body.

48. Two particles A and B of masses 20 g and 10 g and 20 g respectively fall vertically. At a given time, the speed of particle A is 12 m/s and that of B is 15 m/s. Find the total linear momentum of the system of the two particles.

View Text Solution

49. Two bodies A and B of mass 150 g and 250 g respectively are approaching each other.

Both of the total linear momentum of the system of the two particles.

View Text Solution

50. A boy weighing 30 kg is riding a bicycle weighing 50 kg. If the bicycle is moving at a speed of 9 km/h towards the west, Find the linear momentum of the bicycle -buoy system in SI units.

51. A force of 12 N is uniformly distributed over an area of $120cm^2$. Find the pressure in pascals.

View Text Solution

52. How much force should be applied on an area of $1cm^2$ to get a pressure of 12 Pa ?

