©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - HC VERMA

GRAVITATION

Question Bank

1. Calculate the gravitational force between a

10 -kg ball and a 20-kg ball placed at a separation of 5 m .
2. Three balls A, B and C are kept in a straight
line. The separation between A and C is 1 m , and B is placed at the midpoint between them.

The masses of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are $100 \mathrm{~g}, 200 \mathrm{~g}$ and 300 g respectively. Find the net gravitational force on A.
3. Three balls A, B and C are kept in a straight
line. The separation between A and C is 1 m , and B is placed at the midpoint between them. The masses of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are $100 \mathrm{~g}, 200 \mathrm{~g}$ and 300 g respectively. Find the net gravitational force on B.

D View Text Solution

4. Three balls A, B and C are kept in a straight
line. The separation between A and C is 1 m ,
and B is placed at the midpoint between them.

The masses of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are $100 \mathrm{~g}, 200 \mathrm{~g}$ and 300 g respectively. Find the net gravitational force on C.

D View Text Solution

5. The acceleration due to gravity near the earth's surface is $9.8 \mathrm{~m} / \mathrm{s}^{2}$, and the earth's radius is $6,400 \mathrm{~km}$.From this data calculate the mass of the earth. Use any universal constant if required.
6. Two particles of mass 200 g each are placed at a separation of 10 cm . Assume that the only forces acting on them are due to their gravitational attraction. Find the acceleration of each when they are allowed to move.

D View Text Solution

7. A particle weighs 120 N on the surface of the earth. At what height above the earth's
surface will its weight be 30 N ? Radius of the earth $=6,400 \mathrm{~km}$.

D View Text Solution

8. Suppose the earth shrinks such that its radius decreases to half the present value.

What will be the acceleration due to gravity on
the surface of the earth?

D View Text Solution
9. Calculate the value of the acceleration due to gravity at a place $3,200 \mathrm{~km}$ above the surface of the earth.

D View Text Solution

10. The acceleration due to gravity at a place is
$0.2 \mathrm{~m} / \mathrm{s}^{2}$. Find the height above the earth's
surface .
11. As one moves to a place $3,200 \mathrm{~km}$ above the earth's surface, the acceleration due to gravity reduces to $4 / 9$ of its value at the earth's surface. Calculate the radius of the earth form the data.

D View Text Solution

12. A ball is dropped from a cliff. Find its speed

2 s after it is dropped.
13. A ball is dropped from a cliff. Find its speed when it has fallen through 78.4 m .

D View Text Solution

14. A ball thrown upwards takes 4 s to reach the maximum height. Find the initial speed with which it was thrown.

- View Text Solution

15. A stone thrown upwards attains a maximum height of 19.6 m . Find the velocity with which it was thrown.

D View Text Solution

16. A wicket keeping glove is dropped from a
height of 40 m and simultaneously a ball is
thrown upwards from the ground with a speed of $40 \mathrm{~m} / \mathrm{s}$. When and where do they meet ?
17. A boy on a 78.4 -m-high cliff drops a stone.

One second later, he throws another stone downwards with the some speed. The two stones reach the ground simultaneously. Find the speed with which the second stone was thrown.

- View Text Solution

