

PHYSICS

BOOKS - MAXIMUM PUBLICATION

MODEL PAPER 3

Example

1. Identify the relation between the first pair and complete the second

Momentum : m imes v , Impulse: ____

2. Find the odd one(a)F (b)(m v - m u)/ t(c)m v - m u (d)ma

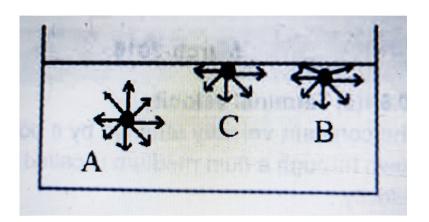
A. F

B. $\frac{mv - mu}{t}$

 $\mathsf{C}.\,mv-mu$

D. ma

Answer: C



Watch Video Solution

3. The earth is not a perfect sphere, its radius is not the same everywhere If so, will the value of g be the same everywhere on earth?

4. What is the reason for surface tension?

5. State Pascal's law

6. What is the basis of Pascal's law?

Watch Video Solution

7. A car of 1000kg moves with a velocity 20m/s. On applying brakes it comes to rest in 5s.

What is the initial momentum?

8. A car of 1000kg moves with a velocity 20m/s. On applying brakes it comes to rest in 5s.

What is the final momentum?

Watch Video Solution

9. When a stone of mass 50 kg and another of mass 5 kg fall down simultaneously form the top of a five storey building, which one will reach the ground first?

Watch Video Solution

10. Write the equation of motion. What does each letter indicate?

Watch Video Solution

11. We are familiar with Newton's laws of motion.

Using the Newton's second law, explain:

- (i)impulse momentum principle.
- (ii)Law of conservation of linear momentum.

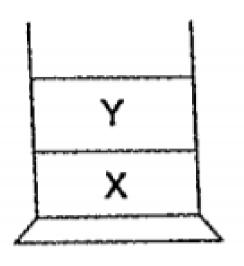
12. A ball thrown vertically upward reached a maximum height of 20m.

What was the velocity of the stone at the instant of throwing up?

13. A ball thrown vertically upward reached a maximum height of $20m. \,$

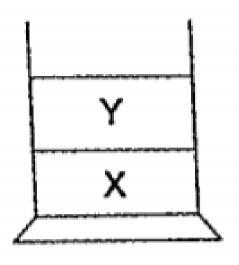
How mch time did the ball take to reach the height 20m?

Watch Video Solution


14. Name three devices constituted o the basis of Pascal's law

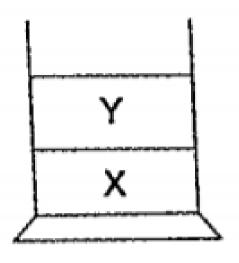
Watch Video Solution

15. The figure shows a jar containing honey and kerosene


Which is the liquid labelled as X

16. The figure shows a jar containing honey and kerosene

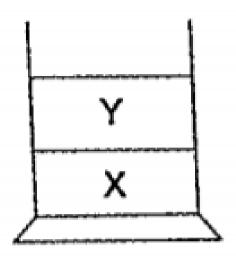
Which liquid is the mobile liquid?



Watch Video Solution

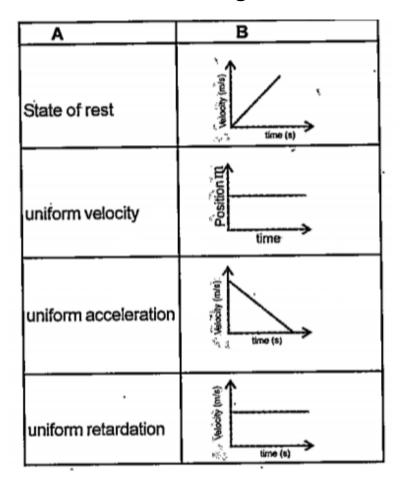
17. The figure shows a jar containing honey and kerosene

Which liquid has higher buouancy?



Watch Video Solution

18. The figure shows a jar containing honey and kerosene


Suggest a method to reduce the viscosity of a

liquid

19. Match the following

20. Complete the table

m, (kg)	m _{2(kg)}	d _(m)	F _(N)
10	10	1	F
5	10	1	(a)
5	5	1	(b)
10	10	2	(c)
10	10	1/2	(d)

Watch Video Solution

21. Write down situation related to each

Inertia of rest

22. Write down situation related to each inertia of motion

Watch Video Solution

23. Write down situation related to each

Newton's third law of motion

24. Write down situation related to each

Newton's second law of motion

