© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BAL BHARTI

CURRENT ELECTRICITY

Example

1. Acurrent of 0.4Aflowsthrough a conductor
for 5minutes. How much charge would have passed through the conductor?

- Watch Video Solution

2. The resistance of the filament in a light bulb
is 1000Ω. If the bulb is fed by a current from a source of potential difference 230 V , how much current will flow through it?

- Watch Video Solution

3. The length of a conducting wire is 50 cm and its radius is 0.5 mm . If its resistance is 30Ω
what is the resistivity of its material?

D Watch Video Solution

4. A current of 0.24 A flows through a conductor when a potential difference of 24 V is applied between its two ends. What is its resistance?

D Watch Video Solution
5. Determine the current that will flow when a potential difference of 33 V is applied between two ends of an appliance having a resistance of 110Ω. If the same current is to flow through an appliance having a resistance of 500Ω, how much potential difference should be applied across its two ends?

D Watch Video Solution

6. Determine the resistance of a copper wire having a length of 1 km and diameter of 0.5 mm

D Watch Video Solution

7. Three resistors having resistances of 15Ω, 3Ω and 4Ω are connected in series. What is the effective resistance in the circuit?
8. Solve:

Two resistors having resistance of 16 and 14 are connected in series, if a potential difference of 18 V is applied across them, calculate the current flowing through the circuit and the potential difference across each individual resistor

D Watch Video Solution

9. Resistors having resistances of $15 \Omega, 20 \Omega$ and 10Ω are connected in parallel. What is the

effective resistance in the circuit?

D Watch Video Solution

10. Three resistors having resistances of 5Ω, 10Ω and 30Ω are connected in parallel and a potential difference of 12 V is applied across
them. Obtain the current flowing through the circuit ang through individual resistors. What is the effective resistance in the circuit?

- Watch Video Solution

1. Answer the following question:

The accompanying figure shows some electrical appliances connected in a circuit in a house.

By which method are the appliances connected?
2. Answer the following question:

The accompanying figure shows some electrical appliances connected in a circuit in a house.

will the current passing through each appliances be the same ? Justify the answer.

D Watch Video Solution

3. Answer the following question:

The accompanying figure shows some electrical appliances connected in a circuit in a house.

why are the domestic appliances connected in
this way?

(Watch Video Solution

4. If the T.V. stops working, will the other appliances also stop working? Explain your answer.
5. The following figure shows the symbols for components used in the accompanying electrical circuit. Place them at proper places and complete the circuit.

Which law can you prove with the help of the above circuit?
6. Umesh has two bulbs having resistances of 15Ω and 30Ω. He wants to connect them in ,a circuit, but if he connects them one at a time the filament gets burnt. Answer the following.

What are the characteristics of this way of connecting the bulbs?

D Watch Video Solution
7. Umesh has two bulbs having resistances of
15Ω and 30Ω. He wants to connect them in ,a circuit, but if he connects them one at a time the filament gets burnt. Answer the following.

What are the characteristics of this way of connecting the bulbs?

D Watch Video Solution

8. Umesh has two bulbs having resistances of
15Ω and 30Ω. He wants to connect them in ,a
circuit, but if he connects them one at a time
the filament gets burnt. Answer the following.

What will be the effective resistane in the above circuit?

D Watch Video Solution

9. Answer the following question:

The following table shows current in amperse and potential difference in Volts.

Find the average resistance.

\boldsymbol{V} (Volts)	\boldsymbol{I} (Amp)
4	9
5	11.25
6	13.5

D Watch Video Solution

10. Answer the following question:

The following table shows current in amperes
and potential difference in Volts.

What will be the nature of the graph between
the current and potential difference?(Do not
draw a graph).

\boldsymbol{V} (Volts)	\boldsymbol{I} (Amp)
4	9
5	11.25
6	13.5

D Watch Video Solution

11.

Sr. No.	Polynomial	Degree
(1)	$7 y-y^{3}+5$	
(2)	$m^{3} n^{7}-3 m^{5} n+m n$	
(3)	$\sqrt{2} m^{10}-7$	
(4)	$x y z+x y-2$	

12. Match the pairs
'A' Group
13. Free electrons
14. Current
b. Increases the resistance in the circuit
15. Resistivity c. Weakly attached
16. Resistances in d. VA/LI series

D Watch Video Solution
13. The resistance of a conductor of length x is
r. If its area of cross section is a, what is its
resistivity? What is its unit?

- Watch Video Solution

14. Resistances R_{1}, R_{2}, R_{3} and R_{4}, are connected as shown in the figure. S_{1} and S_{2} are two keys. Discuss the current flowing in the circuit in the following cases. Both S_{1} and S_{2} are closed.

- Watch Video Solution

15. Resistances R_{1}, R_{2}, R_{3} and R_{4}, are
connected as shown in the figure. S_{1} and S_{2}
are two keys. Discuss the current flowing in the circuit in the following cases.

Both S_{1} and S_{2} are open.

16. Resistances R_{1}, R_{2}, R_{3} and R_{4}, are connected as shown in the figure. S_{1} and S_{2} are two keys. Discuss the current flowing in the circuit in the following cases.

Both S_{1} and S_{2} are open.

D Watch Video Solution

17. Answer the following question:

Three resistances $\quad x_{1}, x_{2}$ and x_{3} are
connected in series in a circuit . X is the effective resistance. The properties observed
for these different ways of connecting x_{1}, x_{2} and x_{3} are given below. Write the way in which
they are connected in each case.(I-current, Vpotential difference, x-effective resistance)

Current I flows through x_{1}, x_{2} and x_{3}.

- Watch Video Solution

18. Answer the following question:

Three resistances x_{1}, x_{2} and x_{3} are
connected in a circuit in different ways. X is
the effective resistance. The properties
oberved for these different ways of connecting
x_{1}, x_{2} and x_{3} are given below. Write the way
in which they are connected in each case.(I-
current, V-potential difference, x-effective resistacen)
x is larger than x_{1}, x_{2} and x_{3}.
19. Answer the following question:

Three resistances x_{1}, x_{2} and x_{3} are
connected in a circuit in different ways. X is
the effective resistance. The properties
oberved for these different ways of connecting
x_{1}, x_{2} and x_{3} are given below. Write the way
in which they are connected in each case.(I-
current, V-potential difference, x-effective resistacen)
x is smaller than x_{1}, x_{2} and x_{3}.
20. Answer the following question:

Three resistances x_{1}, x_{2} and x_{3} are
connected in a circuit in different ways. X is
the effective resistance. The properties
oberved for these different ways of connecting
x_{1}, x_{2} and x_{3} are given below. Write the way
in which they are connected in each case.(I-
current, V-potential difference, x-effective resistacen)

The potential difference across x_{1}, x_{2} and x_{3} is the same .
21. Answer the following question:

Three resistances x_{1}, x_{2} and x_{3} are
connected in a circuit in different ways. X is
the effective resistance. The properties oberved for these different ways of connecting
x_{1}, x_{2} and x_{3} are given below. Write the way
in which they are connected in each case.(Icurrent, V-potential difference, x-effective resistacen)
$x=x_{1}+x_{2}+x_{3}$.
22. Answer the following question:

Three resistances x_{1}, x_{2} and x_{3} are
connected in a circuit in different ways. X is
the effective resistance. The properties oberved for these different ways of connecting
x_{1}, x_{2} and x_{3} are given below. Write the way
in which they are connected in each case.(Icurrent, V-potential difference, x-effective resistacen)

$$
x=\frac{1}{\left(\frac{1}{x_{1}}\right)+\left(\frac{1}{x_{2}}\right)+\left(\frac{1}{x_{2}}\right)}
$$

- Watch Video Solution

23. The resistance of a 1 m long nichrome wire is 6Ω. If we reduce the length of the wire to 70 cm , what will its resistance be?

- Watch Video Solution

24. When two resistors are connected in series, their effective resistance is 80Ω. When :
they are connected in parallel, their effective
resistance is 20Ω. What are the values of the two resistances?

D Watch Video Solution

25. Solve the following examples (numerical problems):

If a charge of 420 C flows through a conducting wire in 5 minutes what is the value of the current?

