©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BAL BHARTI

WORK AND ENERGY

Solved Examples

1. Calculate the work done to take an object of mass 20 kg to a height of 10 m .
2. Pravin has applied a force of 100 N on an object, at an angle of 60° to the horizontal.

The object gets displaced in the horizontal direction and 400 J work is done. What is the displacement of the object?

D Watch Video Solution

3. A stone having a mass of 250 gm is falling
from a height. How much kinetic energy does
it have at the moment when its velocity is 2 m / s ?

D Watch Video Solution
4. 500 kg water isstored in the overhead tank of a 10 m high building.Calculate the amount of potential energy stored in the water.

D Watch Video Solution

5. Swaralee takes 40 s to carry \& bag weighing

20 kg to a height of 5 m . How much power has
she used?

D Watch Video Solution

6. A 25 W electric bulb is used for 10 hours
every day. How much electricity doesit consume each day?

Use Your Brain Power

1. You have learnt how to calculate the work done on an object when the displacement is in the direction of the applied force. But if the displacement is not in the direction of the applied force, how do we calculate the amount of work done

D Watch Video Solution

2. Use your Brain Power!

If the mass of a moving body is doubled, how many times will be kinetic energy increase?

D Watch Video Solution

Exercises

1. Explain the difference between potentail energy and kinetic energy.
2. Answer the following questions:

Derive the formula for the kinetic energy of an object of mass m moving with velocity v.

- Watch Video Solution

3. Prove that the kinetic energy of a freely
falling object on reaching the ground is nothing but the transformation of its initial potential energy
4. Answer the following questions:

Determine the amount of work done when an
object is displaced at an angle of 30° with respect to the direction of the applied force.

D Watch Video Solution

5. Answer the following questions:

If an object has 0 momentum, does it have kinetic energy? Explain your answer.

- Watch Video Solution

6. Why is the work done on an object moving with uniform circular motion zero?

- Watch Video Solution

7. Choose one or more alternatives:

For work to be performed, energy must be
A. transferred from one place to another

B. concentrated

C. transformed from one type to another

D. destroyed

D Watch Video Solution

8. Choose one or more alternatives:
the joule is the unit of.
A. force
B. work
C. power
D. energy

D Watch Video Solution
9. Choose one or more alternatives:

Which of the forces involved in dragging a heavy object on a smooth, horizontal surface, have the same magnitude?

D Watch Video Solution

10. Choose one or more alternatives:

Power is a measure of the
11. Choose one or more alternatives:

While dragging or lifting an objectm negative work is done by........

D Watch Video Solution

12. The potential energy of your body isleast when you are......

D Watch Video Solution
13. The total energy of an object falling freely towards the ground.

- Watch Video Solution

14. If we increase the velocity of a car moving on a flat surface to 4 times its original speed,
its potential energy.....

- Watch Video Solution

15. The work done on an object does not depend on.....

D Watch Video Solution

16. Questions based on paragraph

Study the following activity and answer the questions.

Take two aluminium channels of different lengths.

Place the lower ends of the channels on the
floor and hold their upper ends at the same height.

Now take two balls of the same size and weight and release them from the top end of the channels. They will roll down and cover the same distance.

Which law related to energy does the above activity demonstrate? Explain.

D Watch Video Solution

17. Questions based on paragraph

Study the following activity and answer the questions.

Take two aluminium channels of different lengths.

Place the lower ends of the channels on the
floor and hold their upper ends at the same height.

Now take two balls of the same size and weight and release them from the top end of the channels. They will roll down and cover the same distance.

Which law related to energy does the above activity demonstrate? Explain.

D Watch Video Solution

18. Study the following activity and answer the questions: Now take two balls of the same size and weight and release them from the top end of the channels. They will roll down and cover the same distance.

- Watch Video Solution

19. Study the following activity and answer the questions: At the moment of releasing the balls, which energy do the balls have?

- Watch Video Solution

20. Study the following activity and answer the questions: As the balls roll down which energy
is converted into which other form of energy?

- Watch Video Solution

21. Study the following activity and answer the questions: Why do the balls cover the same distance on rolling down?

- Watch Video Solution

22. Study the following activity and answer the questions: What is the form of the eventual total energy of the balls?

- Watch Video Solution

23. Questions based on paragraph

Study the following activity and answer the questions.

Take two aluminium channels of different lengths.

Place the lower ends of the channels on the
floor and hold their upper ends at the same height.

Now take two balls of the same size and weight and release them from the top end of the channels. They will roll down and cover the same distance.

Which law related to energy does the above activity demonstrate? Explain.

D Watch Video Solution

24. Solve the following examples:

An electric pump has 2 kW power. How much
water will the pump lift every minute to a height of 10 m ?
25. Solve the following examples:

If a 1200 W electric iron is used daily for 30 minutes, how much total electricity is consumed in the month of April?

D Watch Video Solution

26. Solve the following examples:

If the energy of a ball falling from a height of
10 metres is reduced by 40%, how high will it rebound?
27. The velocity of a car increases from 54 $\mathrm{km} / \mathrm{hr}$ to $72 \mathrm{~km} / \mathrm{hr}$. How much is the work done if the mass of the car is 1500 kg ?

D Watch Video Solution

28. Solve the following examples:

Ravi applied a force of 10 N and moved a book

30 cm in the direction of the force. How much was the work done by Ravi?

Watch Video Solution

