

India's Number 1 Education App

MATHS

BOOKS - NAND LAL PUBLICATION

POLYNOMIALS

Exercise 21

1. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer:- $4x^2-3x+7$

Watch Video Solution

2. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer:- $y^2+\sqrt{2}$

3. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer:- $3\sqrt{t}+t\sqrt{2}$

4. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer:- $y+\frac{2}{v}$

5. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer:- $x^{10}+y^3+t^{50}$

6. Write the coefficients of x^2 in each of the following: $2+x^2+x$

7. Write the coefficients of x^2 in each of the following: $2-x^2+x^3$

8. Write the coefficients of x^2 in each of the following: $\frac{\pi}{2}x^2+x$

9. Write the coefficients of x^2 in each of the following: $\sqrt{2x}-1$

10. Give one example each of a binomial of degree 35, and of a monomial of degree 100.

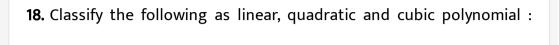
11. Write the degree of each of the following polynomials: $5x^3 + 4x^2 + 7x$

12. Write the degree of each of the following polynomials: $4-y^2$

13. Write the degree of each of the following polynomials: $5t-\sqrt{7}$

14. Write the degree of each of the following polynomials: 3

15. Classify the following as linear, quadratic and cubic polynomials:


$$x^2 + x$$

16. Classify the following as linear, quadratic and cubic polynomial : $x-x^3$.

17. Classify the following as linear, quadratic and cubic polynomial : $y+y^2+4$.

0	Watch Video Solution	
---	----------------------	--

Watch Video Solution

1 + x.

- **19.** Classify the following as linear, quadratic and cubic polynomial : 3t.
 - Watch Video Solution

- **20.** Classify the following as linear, quadratic and cubic polynomial : r^2 .
 - Watch Video Solution

21. Classify the following as linear, quadratic and cubic polynomial : $7x^3$

Exercise 2 2

- **1.** Find the value of the polynomial $5x 4x^2 + 3$ at x = 0.
 - Watch Video Solution

3. Find the value of the polynomial $5x - 4x^2 + 3$ at x = 2.

2. Find the value of the polynomial $5x - 4x^2 + 3$ at x = -1.

Watch Video Solution

4. Find
$$p(0), p(1)$$
 and $p(2)$ for the following polynomial : $p(y) = y^2 - y + 1.$

5. Find p(0), p(1) and p(2) for each of the following polynomials:

 $p(t) = 2 + t + 2t^2 - 1^3$

7. Find p(0), p(1) and p(2) for the following polynomial : p(x) = (x-1)(x+1).

6. Find p(0), p(1) and p(2) for the following polynomial: $p(x) = x^3$.

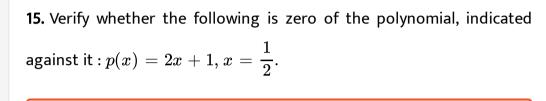
- **8.** Verify whether the following is zero of the polynomial, indicated against it : $p(x)=3x+1, x=-rac{1}{3}.$
 - Watch Video Solution

- **9.** Verify whether the following is zero of the polynomial, indicated against it : $p(x) = 5x \pi, \, x = \frac{4}{5}$.
 - Watch Video Solution

- **10.** Verify whether the following is zero of the polynomial, indicated against it : $p(x) = x^2 1, \, x = 1, \, -1.$
 - Watch Video Solution

11. Verify whether the following is zero of the polynomial, indicated against it: p(x) = (x+1)(x-2), x = -1, 2.

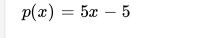
12. Verify whether the following is zero of the polynomial, indicated against it : $p(x)\,=\,x^2,\,x\,=\,0.$


13. Verify whether the following is zero of the polynomial, indicated against it : $p(x)=lx+m, x=-\frac{m}{l}.$

14. Verify whether the following are zeroes of the polynomial, indicated against them,

 $p(x) = 3x^2 - 1, x = \frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$

Watch Video Solution


16. Find the zero of the polynomial in each of the following cases:

17. Find the zero of the polynomial in each of the following cases:

$$p(x)=x+5$$

18. Find the zero of the polynomial in each of the following cases:

$$p(x) = 3x + 5$$

19. Find the zero of the polynomial in the following : p(x)=3x is real number.

20. Find the zero of the polynomial in the following : p(x)=3x is real number.

21. Find the zero of the polynomial in the following : $p(x) = ax, a \neq 0$ is real number.

22. Find the zero of the polynomial in the following : $p(x) = cx + d, \, c
eq 0, \, c, \, d$ is real number.

Exercise 2 3

- **1.** On dividing $x^3 + 3x^2 + 3x + 1$ by x + 1 we get remainder :
 - Watch Video Solution

- **2.** On dividing x^3+3x^2+3x+1 by $x-\frac{1}{2}$ we get remainder :
 - Watch Video Solution

- **3.** On dividing x^3+3x^2+3x+1 by x we get remainder :
 - Watch Video Solution

- **4.** Find the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by $: x + \pi$.
 - Watch Video Solution

- **5.** On dividing $x^3 + 3x^2 + 3x + 1$ by 5 + 2x we get remainder :
 - Watch Video Solution

7. Check whether 7 + 3x is a factor of $3x^3 + 7x$

Exercise 2 4

1. Determine which of the following polynomials has (x + 1) a factor:

$$x^3 + x^2 + x + 1$$

2. Determine which of the following polynomials has (x + 1) a factor:

$$x^4 + x^3 + x^2 + x + 1$$

3. Determine which of the following polynomials has (x + 1) a factor:

$$x^4 + 3x^3 + 3x^2 + x + 1$$

4. Determine which of the following polynomials has (x + 1) a factor:

$$x^3 - x^2 - (2 + \sqrt{2})x + \sqrt{2}$$

5. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:

$$p(x) = 2x^3 + x^2 - 2x - 1, g(x) = x + 1$$

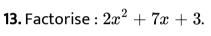
6. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases: $p(x)=x^3+3x^2+3x+1, g(x)=x+2$

7. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases: $p(x) = x^3 - 4x^2 + x + 6, \, g(x) = x - 3$

8. Find the value of k, if x-1 is a factor of p(x) of the following case : $p(x) = x^2 + x + k.$

9. Find the value of k, if x-1 is a factor of p(x) of the following case : $p(x)=2x^2+kx+\sqrt{2}.$

10. Find the value of k, if x-1 is a factor of p(x) of the following case $p(x) = kx^2 - \sqrt{2}x + 1$.



11. Find the value of k, if x-1 is a factor of p(x) of the following case : $p(x) = kx^2 - 3x + k$.

Watch Video Solution	
----------------------	--

12. The factors of
$$12x^2-7x+1$$
 are :

14. The factors of $6x^2 + 5x - 6$ are :

15. Factorise : $3x^2 - x - 4$.

16. Factorise : $x^3 - 2x^2 - x + 2$.

17. Factorise : $x^3 - 3x^2 - 9x - 5$.

Watch Video Solution

18. Factorise : $x^3 + 13x^2 + 32x + 20$.

Watch Video Solution

19. Factorise : $2y^3 + y^2 - 2y - 1$.

Watch Video Solution

1. Use the suitable identity to find the following product : (x+4)(x+10).

2. Use the suitable identity to find the following product : (x+8)(x-10).

3. Use the suitable identity to find the following product : (3x+4)(3x-5).

$$\left(y^2+\frac{3}{2}\right)\left(y^2-\frac{3}{2}\right).$$

Watch Video Solution

- **5.** Use the suitable identity to find the following product : (3-2x)(3+2x).
 - Watch Video Solution

- **6.** Evaluate the following product without multiplying directly :
- 103×107 .
 - Watch Video Solution

7. Evaluate the following product without multiplying directly : 95 imes 96

8. Evaluate the following product without multiplying directly :

9. Factorise the following using appropriate identities :

Watch Video Solution

 104×96 .

 $9x^2 + 6xy + y^2$.

Watch Video Solution

10. Factorise the following using appropriate identities : $4y^2-4y+1$.

watch video Solution

- **11.** Factorise the following using appropriate identities : $x^2 \frac{y^2}{100}$.
 - Watch Video Solution

12. Expand the following using suitable Identities : $(x+2y+4z)^2$.

13. Expand each of the following, using suitable identifies:

- Watch Video Solution
- $\left(2x-y+2
 ight)^2$
 - Watch Video Solution

14. Expand the following using suitable Identities : $\left(-2x+3y+2z\right)^2$

15. Expand the following using suitable Identities :
$$(3a - 7b - c)^2$$
.

16. Expand the following using suitable Identities : $\left(-2x+5y-3z\right)^2$.

 $\left[a-b+1\right]^2$

17. Expand each of the following, using suitable identifies:

19. Factorise :
$$2x^2+y^2+8z^2-2\sqrt{2}xy+4\sqrt{2}yz-8xz$$
.

20. Write the following cube in expanded : $\left(2x+1\right)^3$.

21. Write the following cube in expanded $:\left(2a-3b
ight) ^{3}.$

22. Write the following cubes in expanded form:

Watch Video Solution

 $[3x + 1]^3$

23. Write the following cube in expanded : $\left[x - \frac{2}{3}y\right]^3$.

24. Evaluate the following using suitable identity: $(99)^3$.

25. Evaluate the following using suitable identity: $(102)^3$.

26. Evaluate the following using suitable identity: $(998)^3$.

27. Factorise the following : $8a^3 + b^3 + 12a^2b + 6ab^2$.

28. Factorise each of the following: $8a^3-b^3-12a^2b+6ab^2$

29. Factorise the following : $27-125a^3-135a+225a^2$.

30. Factorise the following : $64a^3-27b^3-144a^2b+108ab^2$.

31. Factorise the following : $27p^3-\frac{1}{216}-\frac{9}{2}p^2+\frac{1}{4}p$.

Watch Video Solution

32. Verify: $x^3 + y^3 = (x + y)(x^2 - xy + y^2)$.

Watch Video Solution

33. Verify : $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$.

Watch Video Solution

34. Factorise each of the following:

 $27u^3 + 125x^3$

Watch Video Solution

35. Factorise the following : $64m^3 - 343n^3$.

36. Factorise : $27x^3 + y^3 + z^3 - 9xyz$.

Verify

that

$$x^3 + y^3 + z^3 - 3xyz = rac{1}{2}(x+y+z)\Big[(x-y)^2 + (y-z)^2 + (z-x)^2\Big]$$

37.

38. If x + y + z = 0, show that $x^3 + y^3 + z^3 = 3xyz$.

39. Without actually calculating the cubes, find the value of each of the following: $(-12)^3 + (7)^3 + (5)^3$

40. Without actually calculating the cubes, find the value of each of the following: ${(28)}^3 + {(\,-15)}^3 + {(\,-13)}^3$

41. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given: Area :

$$25a^2 - 35a + 12$$

42. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given: Area : $35y^2+13y-12$

43. What are the possible expressions for the dimensions of the cuboids whose volumes are given below? Volume : $3x^2-12x$

44. What are the possible expressions for the dimensions of the cuboids whose volumes are given below? Volume : $12ky^2+8ky-20k$

