© ${ }^{\prime}$ doubtnut

India's Number 1 Education App

MATHS

BOOKS - SWAN PUBLICATION

AREAS OF PARALLELOGRAMS AND

TRIANGLES

Exercise 91

1. Which of the following figures lie on the same base and between the same parallels.

Insuch a case, write the common base and the
two parallels.

- Watch Video Solution

1. In Fig ., $A B C D$ is parallologram ,
$A E \perp D C$ and $C F \perp A D$. If $\mathrm{AB}==16 \mathrm{~cm}, \mathrm{AE}$
$=8 \mathrm{~cm}$ and $C F=10 \mathrm{~cm}$, find $A D$.

(Watch Video Solution

2. If E, F G and H are respectively the mid points of the sides of a parallelogram $A B C D$,
show that $\operatorname{ar}(E F G H)=\frac{1}{2} \operatorname{ar}(A B C D)$.

- Watch Video Solution

3. P and Q are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogram $A B C D$. Show that $\operatorname{ar}(A P B)=a r$ (BQC).
4. In Fig ., P is a point in the interior of a parallelogram $A B C D$. Show that

$\operatorname{ar}(A P B)+\operatorname{ar}(P C D)=\frac{1}{2} \operatorname{ar}(A B C D)$

- Watch Video Solution

5. In Fig ., P is a point in the interior of a parallelogram $A B C D$. Show that

$$
\operatorname{ar}(A P D)+\operatorname{ar}(P B C)=\operatorname{ar}(A P B)+\operatorname{ar}(P C D)
$$

- Watch Video Solution

6. In Fig ., PQRS and ABRS are parallelograms and X is any point on side $B R$. Show that $\operatorname{ar}(P Q E S)=\operatorname{ar}(A B R S)$

- Watch Video Solution

7. In Fig ., PQRS and ABRS are parallelograms and X is any point on side $B R$. Show that

$\operatorname{ar}(A X S)=\frac{1}{2} \operatorname{ar}(\mathrm{PQRS})$

- Watch Video Solution

8. A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q.In how many parts the field is divided ? What are the shapes
of these parts ? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it ?

D Watch Video Solution

Exercise 93

1. In Fig ., E is any point on median AD of a
$\Delta A B C$. Show that ar (ABE $=\operatorname{ar}(\mathrm{ACE})$.

D Watch Video Solution

2. E is any point on median AD of a $\triangle A B C$.

Show that $\operatorname{ar}(A B E)=\operatorname{ar}(A C E)$.

D
3. Show that the diagonals of a parallelogram divide it into four triangles of equal area.

D Watch Video Solution
4. In Fig ., $A B C$ and $A B D$ are two triangles on
the same base $A B$. If line -segment $C D$ is
bisected by $A B$ at O, show that $\operatorname{ar}(A B C)=a r$ (ABD) .

D Watch Video Solution
5. D, E and F are respectively the mid-points of the sides BC, CA and AB of a $\triangle A B C$. Show that:- BDEF is a parallelogram.

D Watch Video Solution

6. D, E and F are respectively the mid-points of the sides BC, CA and AB of a $\triangle A B C$. Show that:- BDEF is a parallelogram.

D Watch Video Solution

7. D, E and F are respectively the mid-points of the sides BC, CA and AB of a $\triangle A B C$. Show that:- BDEF is a parallelogram.

- Watch Video Solution

8. In Fig ., diagonals $A C$ and $B D$ of quadrilateral
$A B C D$ intrsect at O such that $O B=O D$. If $A B=$
CD , then show that :

$\operatorname{ar}(\mathrm{DOC})=\operatorname{ar}(\mathrm{AOB})$

- Watch Video Solution

9. In Fig ., diagonals AC and BD of quadrilateral $a B C D$ intrsect at O such that $O B=O D$. If $A B=$
$C D$, then show that :

$\operatorname{ar}(\mathrm{DCB})=a r(\mathrm{ACB})$
(D) Watch Video Solution
10. In Fig , diagonals $A C$ and $B D$ of quadrilateral $A B C D$ intrsect at O such that $O B$ $=O D$. If $A B=C D$, then show that :

$D A|\mid C B$ or $A B C D$ is a parallelogram.

- Watch Video Solution

11. D and E are points on sides $A B$ and $A C$ respectively of $\triangle A B C$ such that ar (DBC) $=$ ar
(EBC). Prove that $D E I I B C$.
12. $X Y$ is a line parallel to side $B C$ of triangle ABC . If $B E I I A C$ and $C F I I A B$ meet XY at E and F respectively,show that $\operatorname{ar}(A B E)=\operatorname{ar}(A C F)$.

D Watch Video Solution

13. The side $A B$ of a parallelogram $A B C D$ is produced to any point P. A line through A and parallel to $C P$ meets $C B$ produced at Q and then parallelogram $P B Q R$ is completed. Show that $\operatorname{ar}(A B C D)=\operatorname{ar}(P B Q R)$. [Hint : Join $A C$ and

PQ. Now compare ar (ACQ) and ar (APQ).]
(Watch Video Solution
14. In the figure. $A B C D$ in a trapezium in which
$A B \| D C$.
Proe
that
$\operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)$

15. In Fig ., $A B C D E$ is a pentagon. A line through B parallel to AC meets DC produced at
F. Show that

$\operatorname{ar}(\mathrm{ACB})=a r(\mathrm{ACF})$
(Watch Video Solution
16. In Fig ., $A B C D E$ is a pentagon . A line through B parallel to AC meets DC produced at
F. Show that

$\operatorname{ar}(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE})$

- Watch Video Solution

17. Find the area of a square plot of side 8 m .

- Watch Video Solution

18. $A B C D$ is a trapezium with $A B \| D C$. A line parallel to $A C$ intersects $A B$ at X and $B C$ at Y. Prove that ar (ADX) = ar (ACY). [Hint : Join CX.]
19. In Fig ., $A P\|B Q\| C R$. Prove that $\operatorname{ar}(\Delta P B R)=\operatorname{ar}(\Delta A Q C)$

- Watch Video Solution

20. Diagonals $A C$ and $B D$ of a quadrilateral
$A B C D$ intersect at O in such a way that ar
$(A O D)=a r$ (BOC). Prove that $A B C D$ is a trapezium.

- Watch Video Solution

21.

$\operatorname{ar}(\mathrm{DRC})$
$=\operatorname{ar}(D P C)$ and $\operatorname{ar}(B D P)=\operatorname{ar}(A R C)$. Show that
both the quadrilaterals $A B C D$ and $D C P R$ are trapeziums.

- Watch Video Solution

Exercise 94

1. Parallelogram $A B C D$ and rectangle $A B E F$ are
on the same base $A B$ and have equal areas.

Show that the perimeter of the parallelogram is greater than that of the rectangle.
2. In Fig ., D and E are two points on BC such that $B D=D E=E C$. Show that ar $(A B D)=a r$ $(A D E)=\operatorname{ar}(A E C)$.

Can you now answer the question that you have left in the introduction of this chapter,
whether the field of Budhia has been actually divided into three parts of equal area?
(Watch Video Solution
3.
$-\leq$

DCFE and ABFE are parallelograms. Show that $\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{BCF})$
4. $A B C D$ is a parallelogram and $B C$ is produced to a point Q such that $A D=C Q$. If $A Q$ intersect $D C$ at P, show that: $\operatorname{ar}(B P C)=\operatorname{ar}(D P Q)$

-
 Watch Video Solution

5.

$A B C$ and $B D E$ are two equilateral triangles such
that D is the mid-point of $B C$. If $A E$ interesects

BC at F, show that :
$\operatorname{ar}(\mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$
6.

$A B C$ and $B D E$ are two equilateral triangles such
that D is the mid-point of $B C$. If $A E$ interesects
$B C$ at F, show that :
$\operatorname{ar}(B D E)=\frac{1}{2} \operatorname{ar}(B A E)^{\prime}$

D Watch Video Solution
7. In Fig ., $A B C$ and $B D E$ are two equilateral triangles such that D is the mid -point of $B C$.If
$A E$ intersects $B C$ at F, show that

$\operatorname{ar}(A B C)=2 \operatorname{ar}(B E C)$

- Watch Video Solution

8.

$A B C$ and $B D E$ are two equilateral triangles such
that D is the mid-point of $B C$. If $A E$ interesects $B C$ at F, show that :
$\operatorname{ar}(\mathrm{BFE})=\operatorname{ar}(\mathrm{AFD})$
9.

$A B C$ and $B D E$ are two equilateral triangles such
that D is the mid-point of $B C$. If $A E$ interesects
$B C$ at F, show that :
$\operatorname{ar}(\mathrm{BFE})=2 \operatorname{ar}($ FED $)$

- Watch Video Solution

10.

$A B C$ and $B D E$ are two equilateral triangles such
that D is the mid-point of $B C$. If $A E$ interesects
$B C$ at F, show that :
$\operatorname{ar}(\mathrm{FED})=\frac{1}{8} \operatorname{ar}(\mathrm{AFC})$

- Watch Video Solution

11. Diagonals $A C$ and $B D$ of quadrilateral $A B C D$ intersect each other at P. Show that ar $(A P B) \times \operatorname{ar}(C P D)=\operatorname{ar}(A P D) \times \operatorname{ar}(B P C)$
12. P and Q are respectively the midpoints of sides $A B$ and $B C$ or a triangle $A B C$ and R is the mid-point of $A P$, show $\operatorname{ar}(P R Q)=\frac{1}{2} \operatorname{ar}(A R C)$.

D Watch Video Solution

13. P and Q are respectively the midpoints of sides $A B$ and $B C$ or a triangle $A B C$ and R is the mid-point of AP, show $\operatorname{ar}(\mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\mathrm{ARC})$.
14. P and Q are respectively the midpoints of sides $A B$ and $B C$ or a triangle $A B C$ and R is the mid-point of AP, show $\operatorname{ar}(P B Q)=\operatorname{ar}(A R C)$.

D Watch Video Solution

15. In Fig ., $A B C$ is a right triangle right angled at A. BCED, ACFG and $A B M N$ are squares on
the sides $B C$, $C A$ and $A B$ resprectively .Line segment $A X \perp D E$ meets $B C$ at Y . Show that

$\triangle M B C \cong \triangle A B D$

- Watch Video Solution

16. In Fig ., $A B C$ is a right triangle right angled
at A. BCED , ACFG and $A B M N$ are squares on
the sides $B C$, $C A$ and $A B$ resprectively .Line
segment $A X \perp D E$ meets $B C$ at Y . Show that

$\triangle M B C \cong \triangle A B D$

- Watch Video Solution

17. In Fig ., ABC is a right triangle right angled at A. BCED , ACFG and ABMN are squares on the sides $B C, C A$ and $A B$ resprectively .Line segment $A X \perp D E$ meets BC at Y . Show that

$\triangle M B C \cong \triangle A B D$

- Watch Video Solution

18. In Fig ., $A B C$ is a right triangle right angled
at A. BCED , ACFG and $A B M N$ are squares on
the sides $B C$, $C A$ and $A B$ resprectively .Line
segment $A X \perp D E$ meets $B C$ at Y . Show that

$\triangle M B C \cong \triangle A B D$

- Watch Video Solution

19.

$A B C$ is a
right triangle right angled at A. BCED, ACFG and $A B M N$ are squares on the sides $B C, C A$ and
$A B$ respectively. Line segent $A X \perp$ DE meets

BC at Y. Show that:

$\operatorname{ar}(\mathrm{CYXE})=2 \operatorname{ar}(\mathrm{FCB})$

- Watch Video Solution

20.

$A B C$ is a
right triangle right angled at A. BCED, ACFG and $A B M N$ are squares on the sides $B C, C A$ and
$A B$ respectively. Line segent $A X \perp$ DE meets BC at Y. Show that: $\operatorname{ar}($ CYXE $)=\operatorname{ar}($ ACFG $)$

D Watch Video Solution
21.

$A B C$ is a
right triangle right angled at A. BCED, ACFG and $A B M N$ are squares on the sides $B C, C A$ and
$A B$ respectively. Line segent $A X \perp$ DE meets
$B C$ at Y. Show that:
$\operatorname{ar}(\mathrm{BCED})=\operatorname{ar}(\mathrm{ABMN})+\operatorname{ar}(\mathrm{ACFG})$

- Watch Video Solution

Objective Type Questions

1. State whether the following statements are
true (T) or false (F) :

If A and B are two congruent figures then their areas will be equal.
2. Two figures are said to be on the same base and between the same parallels, if they have a common base (side) and the vertices opposite to the common base of each figure lie on a line parallel to the base .

- Watch Video Solution

3. Parallelogram on equal bases and between the same parallels are equal in area.
4. If a triangle and a parallelogram are on the same base and between the same parallels then the area of the triangle is equal to half the area of the parallelogram .

D Watch Video Solution

5. Two triangles on the same base and between the same parallel lines have unequal areas .

- Watch Video Solution

6. The median of a triangle divides it into two

D Watch Video Solution

7. In the given figure $A B C D$ is a parallelogram and $B D$ is its diagonal ,then ar

$(\Delta A B D) \neq a r(\Delta C D B)$

D View Text Solution

8. A diagonal of parallelogram divides it into
four triangles of equal area.
9. The medians of a triangle ABC intersect each other at G then
$\operatorname{ar}(\Delta A G B)=\frac{1}{3} \operatorname{ar}(\Delta a B C)$

10. The perimeter of a trapezium is equal to
the product of its height and the sum of the parallel sides.

- Watch Video Solution

11. Fill in the Blanks :

Area of || gm = Base \times
12. Area of triangle $=\frac{1}{2} \times \ldots \ldots \ldots \ldots \ldots . \times$ Altitude.

- Watch Video Solution

13. Area of rhombus $=\frac{1}{2} \times \ldots$.

D Watch Video Solution
$14 . \begin{gathered}\text { Area } \\ \text { of }\end{gathered} \quad$ trapezium
$=\frac{1}{2} \times$ Height $\times(\ldots \ldots \ldots \ldots)$

- Watch Video Solution

15. Area of a || gm whose base is 4 cm and the height is 5 cm will be $=$

D Watch Video Solution

16. What will be the height of a triangle whose
base is 4 cm and area is $20 \mathrm{~cm}^{2}$.

D Watch Video Solution
17. $A B C$ is a triangle in which $A B=A C=10 \mathrm{~cm}$ and $\angle A=90^{\circ}$.What will be the area of $\triangle A B C ?$

D Watch Video Solution
18. PQRS is a rhombus .If $\mathrm{PQ}=3 \mathrm{~cm}$, what will be
the perimeter of rhombus?

- Watch Video Solution

19. What will be the height of a || gm whose area is $20 \mathrm{~cm}^{2}$ and the base is 10 cm .
20. If the diagonals of a rhombus are 6 cm and 8 cm then what will be its area?
