

MATHS

BOOKS - ERRORLESS MATHS (HINDI)

JEE (ADVANCED) 2019 PAPER -1

Multiple Choice Questions

1. एक रेखा y=mx +1 वृत्त $(x-3)^2+(y+2)^2=25$ को बिन्दुओं P और Q पर प्रतिच्छेद करती है। यदि रेखा खण्ड PQ के मध्य बिन्दु का x- निर्देशांक - $\frac{3}{5}$ है, तब निम्नलिखित में से कौन सा एक विकल्प सही है।

A.
$$6 \le m < 8$$

$$\mathsf{B.}\, 2 \leq m < 4$$

$$C.4 \le m < 6$$

D.
$$-3 \le m < -1$$

Answer: B

$$M = egin{bmatrix} \sin^2 heta & -1 - \sin^2 heta \ 1 + \cos^2 heta & \cos^4 heta \end{bmatrix} = lpha I + eta M^{-1}$$
 जहाँ

$$lpha=lpha(heta)$$
 और $eta=eta(heta)$ वास्तविक संख्याएँ हैं, और । एक $2 imes2$

तत्समक-आव्यूह है। यदि समुच्चय $\{lpha(heta\!:\! heta\in[0,2\pi]\}$ का निम्नतम

 $lpha^*$ है और समुच्चय $\{eta(heta): heta\in[0,2\pi]\}$ का निम्नतम eta^* है, तो $lpha^*+eta^*$ का मान है

A.
$$\frac{-37}{16}$$
B. $\frac{-29}{16}$
C. $\frac{-31}{16}$
D. $\frac{-17}{16}$

Answer: B

3. माना कि S उन सभी सम्मिश्न संख्याओं z का समुच्चय है जो $|z-2+i| \geq \sqrt{5}$ को संतुष्ट करती हैं। यदि एक सम्मिश्न संख्या z0

Answer: C वीडियो उत्तर देखें

A. $\frac{\pi}{4}$

B. $\frac{3\pi}{4}$

 $C.-\frac{\pi}{2}$

D. $\frac{\pi}{2}$

4. क्षेत्र
$$\left\{(x,y)\colon xy\leq 8, 1\leq y\leq x^2
ight\}$$
 का क्षेत्रफल है

$$2-6$$

है, तब $\dfrac{4-z_0-ar{z}_0}{z_0-ar{z}_0+2i}$ का मुख्य कोणांक है

ऐसी है जिससे $\dfrac{1}{|z_0-1|}$ समुच्चय $\left\{\dfrac{1}{|z-1|}\!:\!z\in s
ight\}$ का उच्चतम

- A. $16 \log_e 2 6$

B.
$$8\log_e 2 - rac{7}{3}$$

C.
$$16\log_e 2 - rac{14}{3}$$
D. $8\log_e 2 - rac{14}{3}$

Answer: C

More Than One Correct Answers

1. दीर्घवृत्तों
$$\{E_1, E_2, E_3......\}$$
 और आयतों

 $\{R_1,\,R_2,\,R_3....$ $\}$ के संग्रहों को निम्न प्रकार से परिभाषित करें :

$$E_1\colon rac{x^2}{9} + rac{y^2}{4} = 1$$

 R_1 : अधिकतम क्षेत्र का आयत, जिसकी भुजाएं अक्षों के समान्तर है, और

जो E_1 में अंतर्थित है

 E_n : अधिकतम क्षेत्र वाला दीर्घवृत्त $\dfrac{x^2}{a_r^2}+\dfrac{y^2}{h_r^2}=1$ जो

 $R_{n-1}, n>1$ में अंतर्थित है

 R_n : अधिकतम क्षेत्र का आयत, जिसकी भुजाएं अक्षों के समान्तर है, और जो $E_{n,n}>1$ में अंतर्थित है। तब निम्न में से कौनसा (से) विकल्प सही है (है)।

- A. E_{18} और E_{19} की उत्केन्द्रतायें समान नहीं है
- B. E_9 के नाभिलम्ब की लम्बाई $rac{1}{\kappa}$ है
- C. प्रत्येक पूर्णांक N के लिए $\sum_{n=1}^{N} (R_n$ का क्षेत्रफल) lt24 है
- D. E_9 में केन्द्र से एक नाभि की दूरी $\dfrac{\sqrt{5}}{22}$ है .

Answer: B::C

2. एक असमकोणीय त्रिभुज ΔPQR के लिए, माना की p,q,r क्रमश : कोण P,Q,R के समाने वाली भुजाओ की लम्बाइयाँ दर्शाती है। R से खींची गयी माध्यिका भुजा PQ से S पर मिलती है , P से खींचा गया अभिलम्ब भुजा QR से E पर मिलता है, तथा RS और PE एक-दूसरे को O पर काटती है। यदि $p=\sqrt{3},q=1$ और ΔPQR के परिवृत की त्रिज्या 1 है, तब निम्न में से कौन-सा (से) विकल्प सही है (है) ?

A. RS की लम्बाई =
$$\frac{\sqrt{7}}{2}$$

B.
$$\triangle SOE$$
 का क्षेत्रफल = $\frac{\sqrt{3}}{12}$

C.
$$\Delta PQR$$
 के अंतर्वृत्त की त्रिज्या $=rac{\sqrt{3}}{2}ig(2-\sqrt{3}ig)$

D. OE की लम्बाई
$$=rac{1}{6}$$

Answer: A::C::D

3. माना कि $f \colon R o R$ निम्न प्रकार से दिया है

$$f(x) = egin{cases} x^5 + 5x^4 + 10x^3 + 10x^2 + 3x + 1, & x < 0 \ x^2 - x + 1, & 0 \le x < 1 \ (2/3)x^3 - 4x^2 + 7x - (8/3), & 1 < x < 3 \ (x - 2)\log(x - 2) - x(10/3), & x \ge 3 \end{cases}$$

तब निम्न में से कौन सा (से) विकल्प सही है (हैं)

A. x =1 पर f' अवकलनीय नहीं है

B. f अंतराल $(-\infty,0)$ में वर्धमान है

C. f आच्छादक है

D. f' का एक स्थानीय उच्चतम x = 1 पर है

Answer: A::C::D

4. माना कि $x^2-x-1=0$ के मूल lpha और eta हैं, जहाँ lpha>eta है।

सभी धनात्मक पूर्णांकों n के लिए निम्न को परिभाषित किया गया हैं

$$a_n=rac{lpha^n-eta^n}{lpha-eta}, n\geq 1, b_1=1$$
 और

$$b_n=a_{n-1}+\alpha_{n+1}n\geq 2$$

तब निम्न में से कौनसा (से) विकल्प सही है (हैं)

A.
$$\sum_{n=1}^{\infty} \frac{a_n}{10^n} = \frac{10}{89}$$

B. प्रत्येक $n \geq 1$ के लिए, $b_n = lpha^n + eta^n$

C. प्रत्येक $n\geq 1$ के लिए, $a_1+a_2....$ $lpha_n=lpha_{n+2}-1$

D.
$$\sum_{n=1}^{\infty} \frac{b_n}{10^n} = \frac{8}{89}$$

Answer: A::B::C

5. माना कि L_1 और L_2 क्रमशः निम्न रेखाएँ है $:\overrightarrow{r}=\hat{i}+\lambda\Big(-\hat{i}+2\hat{j}+2\hat{k}\Big)\lambda\in R$ और $\overrightarrow{r}=\mu\Big(2\hat{i}-\hat{j}+2\hat{k}\Big),\,\mu\in R$ यदि L_3 एक रेखा है जो L_1 और L_2 दोनों के लम्बवत् है और दोनों को काटती है, तब निम्नलिखित विकल्पों

में से कौन सा (से) L_3 को निरूपित करता (करते) है (है)

A.
$$\overrightarrow{r}=rac{1}{3}igl(2\hat{i}+\hat{k}igr)+tigl(2\hat{i}+2\hat{j}-\hat{k}igr),t\in R$$

B. $\overrightarrow{r}=rac{2}{9}igl(4\hat{i}+\hat{j}+\hat{j}igr)+tigl(2\hat{i}+2\hat{j}-\hat{k}igr),t\in R$

C. $\overrightarrow{r}=rac{2}{9}igl(2\hat{i}-\hat{j}+2\hat{k}igr)+tigl(2\hat{i}+2\hat{j}-\hat{k}igr),t\in R$

D. $\overrightarrow{r}=tigl(2\hat{i}+2\hat{j}-\hat{k}igr),t\in R$

Answer: A::B::C

6. तीन थैले B_1 , B_2 और B_3 हैं। B_1 थैले में 5 लाल और 5 हरी गेंदें हैं, B_2 में 3 लाल और 5 हरी गेंदें हैं, और B_3 में 5 लाल और 3 हरी गेंदें हैं। थैले B_1 , B_2 और B_3 के चुने जाने की प्रायिकतायें क्रमशः 3/10, 3/10 और 4/10 हैं। एक थैला यादच्छिक लिया जाता है और एक गेंद उस थैले में से यादच्छिता चुनी जाती है। तब निम्न में से कौनसा (से) विकल्प सही है (हैं)

- A. चुनी गयी गेंद के हरे होने की प्रायिकता है, $\frac{3}{8}$ जब यह ज्ञात है कि चुना हुआ थैला B_3 है
- B. चुने हुए थैले के B_3 होने की प्रायिकता $\frac{5}{13}$ है, जब यह ज्ञात है कि चुनी गयी गेंद हरी है
- C. चुनी गयी गेंद के हरे होने की प्रायिकता $\frac{39}{80}$ है

D. चुने हुए थैले के B_3 होने के साथ-साथ गेंद के हरे होने की प्रायिकता $\frac{1}{3}$ है

Answer: A::C

7. माना कि \lceil एक वक्र y= f(x) है जो प्रथम चतुर्थांश में है और माना कि बिन्दु (1,0) उस पर स्थित है। माना कि \lceil के बिन्दु पर खींची गयी स्पर्श रेखा y- अक्ष को Y_p पर प्रतिच्छेद करती है। यदि \lceil के प्रत्येक बिन्दु P के लिए PY_p की लम्बाई 1 है, तब निम्न में से कौनसा (से) कथन सही है (है)

A.
$$y = -\log \left(\frac{1+\sqrt{1-x^2}}{x} \right) + \sqrt{1-x^2}$$

$$\operatorname{B.} xy' + \sqrt{1 - x^2} = 0$$

$$\mathsf{C.}\,xy'-\sqrt{1-x^2}=0$$

D.
$$y - \log \left(rac{1 + \sqrt{1 - x^2}}{x}
ight) + \sqrt{1 - x^2}$$

Answer: B::D

🕥 वीडियो उत्तर देखें

8. माना कि
$$M=egin{bmatrix}0&1&a\1&2&3\3&b&1\end{bmatrix}$$
 और adj

$$M = egin{bmatrix} -1 & 1 & -1 \ 8 & -6 & 2 \ -5 & 3 & -1 \end{bmatrix}$$
 जहाँ a और b वास्तविक संख्याएँ हैं।

निम्न में से कौन सा (से) विकल्प सही है (है)

A.
$$\det\left(adjM^2\right)=81$$

B.
$$a + b = 3$$

C. यदि
$$Megin{bmatrix}lpha\eta\ \gamma\end{bmatrix}=egin{bmatrix}1\2\3\end{bmatrix}$$
 , तब $lpha-eta+\gamma=3$

D.
$$\left(\operatorname{adj}\,\operatorname{M}^{-1}\right) + \operatorname{adj}\,\operatorname{M}^{-1} = \ -M$$

Answer: B::C::D

Numerical Value Type Questions

1. तीन रेखाएं क्रमशः

$$\overrightarrow{r}=\lambda \hat{i},\lambda \in R$$

$$\overrightarrow{r}=\muig(\hat{i}+\hat{j}ig), n\in R$$
 तथा $\overrightarrow{+}vig(\hat{i}+\hat{j}+\hat{k}ig), v\in R$ द्वारा

दी गयी हैं। माना कि रेखाएं समतल x+y+z=1 को क्रमशः बिन्दुओं A, B

और C पर काटती हैं। यदि त्रिभुज ABC का क्षेत्रफल Δ है तब $(6\underline{\Delta})^2$ का मान बराबर.....

2. माना की S ऐसे 3×3 आव्यूहों का प्रतिदर्श समष्टि है जिनकी प्रविष्टियाँ समुच्चय $\{0,1\}$ से है। माना की घटनाएँ E_1 एवं E_2 निम्न है

$$E_1\{A\in S\colon\!\det A=0\}$$
 और

$$E_2\{A\in S\colon A$$
 की प्रविष्टियों का कुल योग $7\}$ है

यदि एक आव्यूह S से यादिच्छक चुना जाता है, तब सहप्रतिबन्ध प्रायिकता $P(E_1 \mid E_2)$ बराबर

3. माना कि $\omega \neq 1$ एकक का एक घनमूल है। तब समुच्चय $\left\{ \; |\; ab\omega + c\omega^2
ight) \; |^2 \; , \, a, \, b, \, c \;$ भिन्न अशून्य पूर्णांक का निम्नतम बराबर

वीडियो उत्तर देखें

4. माना कि बिन्दु B रेखा 8x - 6y - 23 = 0 के सापेक्ष बिन्दु A(2, 3) का प्रतिबिम्ब है। मानाकि \lceil_A तथा \lceil_B क्रमशः त्रिज्याएं 2 और 1 वाले वृत्त हैं, जिनके केन्द्र क्रमशः A और B हैं। माना कि वृत्तों \lceil_A तथा \lceil_B की एक ऐसी उभयनिष्ठ स्पर्श रेखा T है, दोनों वृत्त जिसके एक ही तरफ हैं। यदि C बिन्दुओं A और B से जाने वाली रेखा और T का प्रतिच्छेद बिन्दु है, तब रेखाखण्ड AC की लम्बाई है......

5. माना कि AP(a, d) एक अनंत समान्तर श्रेणी के पदों का समुच्चय है जिसका प्रथम पद a तथा सार्व अंतर d>0 है। यदि $AP(1,3)\cap AP(2,5)\cap AP(3,7)=AP(a,d)$ है, तब a+d बराबर.......

6. यदि
$$I=rac{2}{\pi}=\int_{-\pi/4}^{\pi/4}rac{dx}{(1+e^{\sin x})(2-\cos 2x)}$$
 तब $27I^2$ बराबर है