

MATHS BOOKS - PSEB

POLYNOMIALS

1. Which of the following expressions are polynomials in one variable

and which are not? State reasons for your answer:- $4x^2 - 3x + 7$

2. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer:- $y^2 + \sqrt{2}$

3. Which of the following expressions are polynomials in one variable

and which are not? State reasons for your answer:- $3\sqrt{t} + t\sqrt{2}$

10. Give one example each of a binomial of degree 35, and of a monomial of degree 100.

11. Write the degree of each of the following polynomials: $5x^3+4x^2+7x$

Watch Video Solution

12. Write the degree of each of the following polynomials: $4-y^2$

13. Write the degree of each of the following polynomials: $5t-\sqrt{7}$

14. Write the degree of each of the following polynomials: 3

Watch Video Solution		

15. Classify the following as linear, quadratic and cubic polynomial : $x^2 + x.$

Watch Video Solution

16. Classify the following as linear, quadratic and cubic polynomials: $x - x^3$

17. Classify the following as linear, quadratic and cubic polynomial :

$$y + y^2 + 4.$$

20. Classify the following as linear, quadratic and cubic polynomial : r^2 .

21. Classify the following as linear, quadratic and cubic polynomial : $7x^3$

26. Find p(0), p(1) and p(3) for each of the following polynomials: $p(t) = 2 + t + 2t^2 - t^3$

Watch Video Solution

27. Find p(0), p(1) and p(4) for each of the following polynomials: $p(x) = x^3$

Watch Video Solution

28. Find p(0), p(1) and p(5) for each of the following polynomials: p(x) = (x - 1)(x + 1)

29. Verify whether the following is zero of the polynomial, indicated

against it :
$$p(x)=3x+1, x=-rac{1}{3}.$$

Watch Video Solution

30. Verify whether the following is zero of the polynomial, indicated

against it : $p(x) = 5x - \pi, x = \frac{4}{5}$.

Watch Video Solution

31. Verify whether the following is zero of the polynomial, indicated

against it : $p(x) = x^2 - 1, x = 1, -1.$

Watch Video Solution

32. Verify whether the following is zero of the polynomial, indicated

against it : p(x) = (x + 1)(x - 2), x = -1, 2.

33. Verify whether the following is zero of the polynomial, indicated

against it : $p(x) = x^2, x = 0$.

Watch Video Solution

34. Verify whether the following is zero of the polynomial, indicated

against it : $p(x) = lx + m, x = -\frac{m}{l}$.

Watch Video Solution

35. Verify whether the following is zero of the polynomial, indicated

against it :
$$p(x)=3x^2-1, x=-rac{1}{\sqrt{3}}, rac{2}{\sqrt{3}}.$$

36. Verify whether the following is zero of the polynomial, indicated

against it :
$$p(x)=2x+1, x=rac{1}{2}.$$

Watch Video Solution

37. Find the zero of the polynomial in the following : p(x) = x + 5 is

real number.

Watch Video Solution

38. Find the zero of the polynomial in the following : p(x) = x - 5 is real number.

39. Find the zero of the polynomial in the following : p(x) = 2x + 5 is

real number.

41. Find the zero of the polynomial in the following : p(x) = 3x is real

number.

42. Find the zero of the polynomial in the following : $p(x) = ax, a \neq 0$ is real number.

43. Find the zero of the polynomial in the following : $p(x) = cx + d, c \neq 0, c, d$ is real number.

44. On dividing $x^3 + 3x^2 + 3x + 1$ by x + 1 we get remainder :

Watch Video Solution

45. On dividing $x^3 + 3x^2 + 3x + 1$ by x we get remainder :

Watch Video Solution

46. On dividing $x^3 + 3x^2 + 3x + 1$ by x we get remainder :

47. On dividing $x^3 + 3x^2 + 3x + 1$ by $x + \pi$ we get remainder :

48. On dividing $x^3 + 3x^2 + 3x + 1$ by 5 + 2x we get remainder :

Watch Video Solution

49. On dividing $x^3 - ax^2 + 6x - a$ by x - a we get remainder :

Watch Video Solution

50. Check whether 7 + 3x is a factor of $3x^3 + 7x$.

Watch Video Solution

51. For which of the following polynomials is x + 1 is a factor ?

55. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases: $p(x) = 2x^3 + x^2 - 2x - 1, g(x) = x + 1$

Watch Video Solution

56. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases: $p(x) = x^3 + 3x^2 + 3x + 1, g(x) = x + 2$

Watch Video Solution

57. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases: $p(x) = x^3 - 4x^2 + x + 6, g(x) = x - 3$

58. Find the value of k, if x - 1 is a factor of p(x) of the following case

$$: p(x) = x^2 + x + k.$$

Watch Video Solution

59. Find the value of k, if x - 2 is a factor of p(x) in each of the following

cases: $p(x)=2x^2+kx+\sqrt{2}$

Watch Video Solution

60. Find the value of k, if x - 3 is a factor of p(x) in each of the following

cases: $p(x)=kx^2-\sqrt{2}x+1$

Watch Video Solution

61. Find the value of k, if x - 4 is a factor of p(x) in each of the following

cases:
$$p(x) = kx^2 - 3x + k$$

66. The factors of $x^3 - 2x^2 - x + 2$ are :

67. Factorise :
$$x^3 - 3x^2 - 9x - 5$$
.

Watch Video Solution

68. Factorise :
$$x^3 + 13x^2 + 32x + 20$$
.

69. Factorise :
$$2y^3 + y^2 - 2y - 1$$
.

70. Use the suitable identity to find the following product : (x + 4)(x + 10).

71. Use the suitable identity to find the following product : (x+8)(x-10).

Watch Video Solution

72. Use the suitable identity to find the following product : (3x + 4)(3x - 5).

73. Use the suitable identity to find the following product : $\left(y^2 + \frac{3}{2}\right)\left(y^2 - \frac{3}{2}\right)$.

Watch Video Solution

74. Use the suitable identity to find the following product : (3-2x)(3+2x).

Watch Video Solution

75. Evaluate the following product without multiplying directly : 103 imes 107.

76. Evaluate the following product without multiplying directly : 95×96 .

79. Factorise the following using appropriate identities : $4y^2 - 4y + 1$.

84. Expand the following using suitable Identities : $(3a - 7b - c)^2$.

100. Factorise the following : $27p^3-rac{1}{216}-rac{9}{2}p^2+rac{1}{4}p.$

101. ਜਾਂਚ ਕਰੋ:-
$$x^3 + y^3 = (x+y)ig(x^2 - xy + y^2ig)$$

Watch Video Solution

102. ਜਾਂਚ ਕਰੋ:-
$$x^3-y^3=(x\!-\!y)ig(x^2+xy+y^2ig)$$

Watch Video Solution

103. Factorise the following : $27y^3 + 125z^3$.

107. If
$$x + y + z = 0$$
, show that $x^3 + y^3 + z^3 = 3xyz$.

108. Without actually calculating the cubes, find the value of each of the following: $(-12)^3 + (7)^3 + (5)^3$

Watch Video Solution

109. Without actually calculating the cubes, find the value of each of the following: $\left(28
ight)^3+(\,-15)^3+(\,-13)^3$

Watch Video Solution

110. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given: Area : $25a^2 - 35a + 12$

111. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given: Area : $35y^2+13y-12$

Watch Video Solution

112. What are the possible expressions for the dimensions of the cuboids whose volumes are given below? Volume : $3x^2 - 12x$

Watch Video Solution

113. What are the possible expressions for the dimensions of the cuboids whose volumes are given below? Volume : $12ky^2 + 8ky - 20k$

5. Find the value of the following polynomials at the indicated value of

variables: $q(y) = 3y^3 - 4y + \sqrt{11}$ at y = 2.

Watch Video Solution

6. Find the value of the following polynomials at the indicated value of

variables: $p(t) = 4t^4 + 5t^3 - t^2 + 6$ at t = a.

Watch Video Solution

7. Check whether -2 and 2 are zeroes of the polynomial x + 2.

8. Find a zero of the polynomial p(x) = 2x + 1.

13. Find the remainder when $x^4 + x^3 - 2x^2 + x + 1$ is divided by x -1.

15. Examine whether x + 2 is a factor of $x^3 + 3x^2 + 5x + 6$ and of 2x +

4.

Watch Video Solution

16. Find the value of k, if x - 1 is a factor of $4x^3 + 3x^2 - 4x + k$.

20. Find the following product using appropriate identities: (x+3)(x+3)

25. Write $\left(3a+4b+5c\right)^2$ in expanded form.

29. Write the following cube in the expanded form: $\left(5p-3q
ight)^3$

