

MATHS

BOOKS - PSEB

QUADRILATERALS

Exercise

- 1. The angles of quadrilateral are in the ratio 3
- : 5 : 9 : 13. Find all the angles of the

quadrilateral.

2. If the diagonals of a parallelogram are perpendicular, then it is a rhombus.

3. If diagonals of a quadrilateral bisect each other at right angles, then it is a:

4. Which of the following statements are True or False:

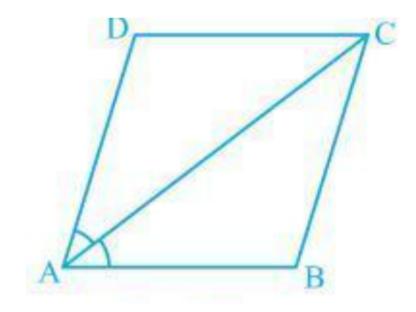
If the diaonals of a quadilateral are equal and bisect each other at right angles then the quadrilateral is a square.

Watch Video Solution

5. Which of the following statements are True or False:

If the diaonals of a quadilateral are equal and

bisect each other at right angles then the quadrilateral is a square.

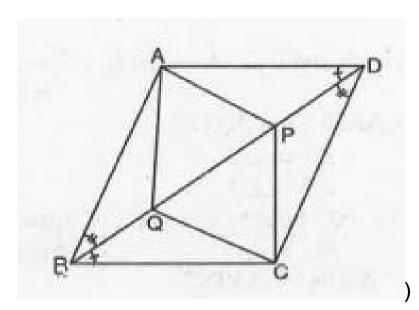


Watch Video Solution

6. Diagonal AC of a parallelogram ABCD bisects

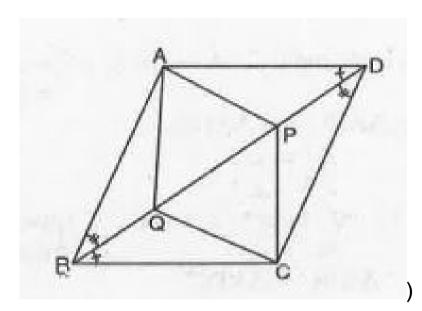
 $\angle A$ (see Fig. 8.19). Show that (i) it bisects $\angle C$

also, (ii) ABCD is a rhombus.


7. ABCD is a rhombus. Show that the diagonal AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$.

8. ABCD is a rectangle in which diagonal AC bisects $\angle Aaswellas/_C$

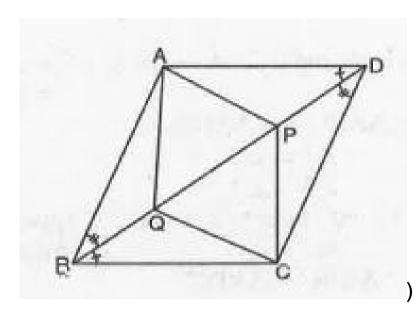
. $Showt\widehat{D}iagonalBDbi\sec ts\perp h/$ _B aswellas/_D`.



Show

that AQ = CP.

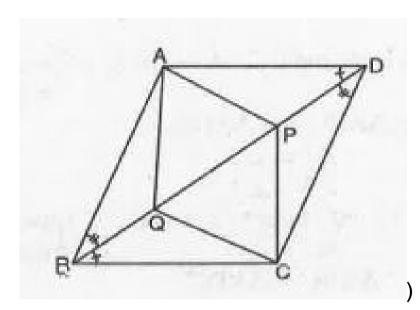
Watch Video Solution



Show

that AQ = CP.

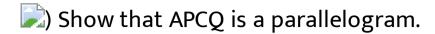
Watch Video Solution



Show

that AQ = CP.

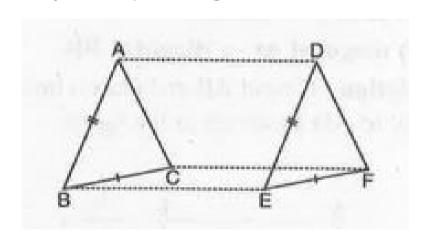
Watch Video Solution



Show

that AQ = CP.

Watch Video Solution



14. ABCD is a parallelogram and AP and CQ are the perpendiculars from vertices A and C on its diagonal BD (See fig.) Show that $\Delta APB\cong\Delta CQD$.

Watch Video Solution

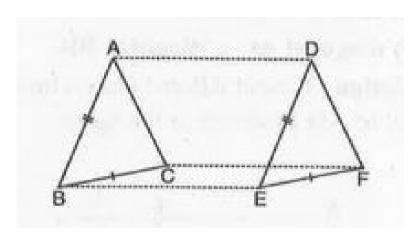
15. In $\triangle ABC$ and $\triangle DEF$, AB = DE, $AB \mid DE$, BC = EF and $BC \mid EF$. Vertices A, B and C are joined to vertices D, E and F respectively (See fig.)

Show

that quadrilateral ABED is a parallelogram.

Watch Video Solution

16. In ΔABC and ΔDEF , AB = DE,

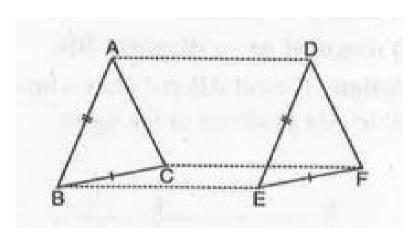

 $AB \mid \mid DE$, BC = EF and $BC \mid \mid EF$.

Vertices A, B and C are joined to vertices D, E and F respectively (See fig.)

Show that quadrilateral BEFC is a parallelogram.

17. In ΔABC and ΔDEF , AB = DE, $AB \mid DE$, BC = EF and $BC \mid EF$. Vertices

Show

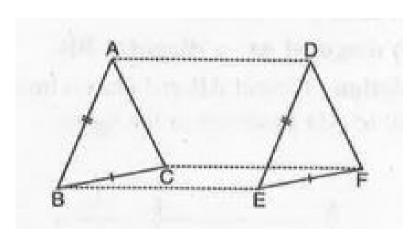

that $AD \mid \ \mid CF$ and AD=CF.

Watch Video Solution

18. In ΔABC and ΔDEF , AB = DE,

 $AB \mid DE$, BC = EF and $BC \mid EF$. Vertices

Show

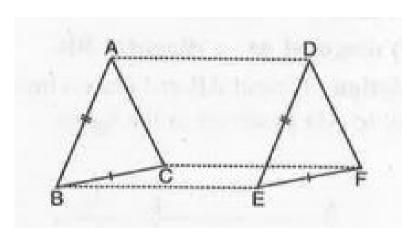

that quadrilateral ACFD is a parallelogram.

Watch Video Solution

19. In ΔABC and ΔDEF , AB = DE,

 $AB \mid DE$, BC = EF and $BC \mid EF$. Vertices

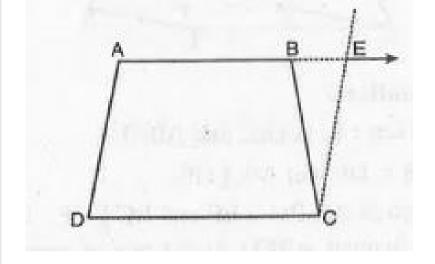
Show


that AC=DF.

Watch Video Solution

20. In ΔABC and ΔDEF , AB = DE,

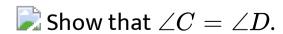
 $AB \mid DE$, BC = EF and $BC \mid EF$. Vertices


Show

that $\Delta ABC\cong \Delta DEF$.

Watch Video Solution

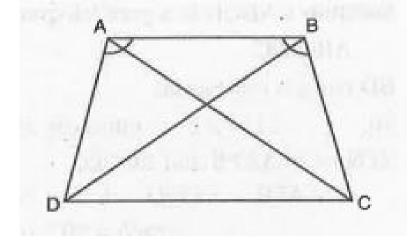
21. ABCD is a trapezium in which $AB \mid \mid CD$ and AD = BC (See Fig.)


Show

that $\angle A = \angle B$.

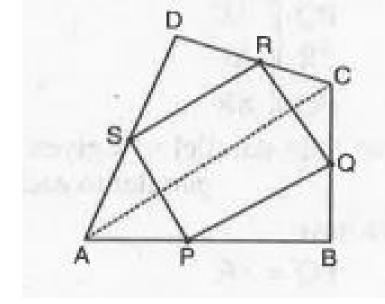
Watch Video Solution

22. ABCD is a trapezium in which $AB \mid \mid CD$ and AD = BC (See Fig.)


Watch Video Solution

23. ABCD is a trapezium in which $AB \mid \mid CD$ and AD = BC (See Fig.)

24. ABCD is a trapezium in which $AB \mid \mid CD$ and AD = BC (See Fig.)


Show

that diagonal AC = diagonal BD.

Watch Video Solution

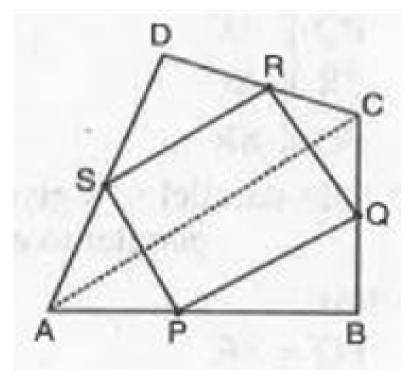
25. ABCD is a quadrilateral in which P, Q, R and S are the mid-points of sides AB, BC, CD and DA respectively (See Fig.

AC is a

Show

that

$$SRIIAC$$
 and $SR = \frac{1}{2}AC$.



Watch Video Solution

26. ABCD is a quadrilateral in which P, Q, R and

S are the mid-points of sides AB, BC, CD and DA

respectively (See Fig.)

AC is a

diagonal Show that PQ = SR.

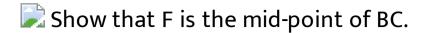
Watch Video Solution

27. ABCD is a quadrilateral in which P, Q, R and S are the mid-points of sides AB, BC, CD and DA respectively (See Fig.)

AC is a diagonal Show that PQRS is a parallelogram.

28. ABCD is a rhombus and P, Q, R, S are the mid-points of AB, BC, CD and DA respectively. Prove that quadrilateral PQRS is a rectangle.

Watch Video Solution


29. ABCD is a rectangle and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.

Watch Video Solution

30. ABCD is a trapezium, in which ABIIDC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E, parallel to AB

intersecting BC at F (See Fig.)

31. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (See Fig)

Show that the line segments AF and EC trisect the diagonal BD.

32. Show that the line segments joining the mid-points of opposite sides of a quadrilateral bisect each other.

Watch Video Solution

33. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that D is the mid-point of AC.

Watch Video Solution

34. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that $MD \perp AC$.

Watch Video Solution

35. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that CM = MA = $\frac{1}{2}AB$.

1. Show that each angle of a rectangle is a right angle.

2. The diagonals of a rhombus are perpendicular to each other .

3. ABC is an isosceles triangle in which AB = AC.

AD bisects exterior angle PAC and CD || AB (see

Fig. 8.14). Show that (i) $\angle DAC = \angle BCA$ and

(ii) ABCD is a parallelogram.

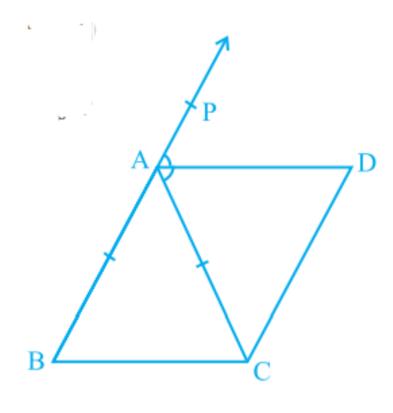


Fig. 8.14

4. Two parallel lines I and m are intersected by a transversal p (see Fig. 8.15). Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.

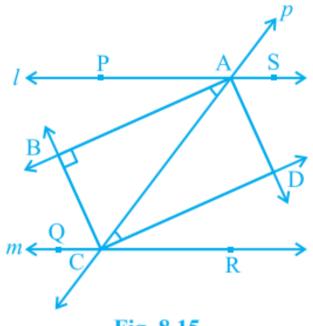


Fig. 8.15

5. The bisectors of angles of a parallelogram from a:

Watch Video Solution

6. ABCD is a parallelogram in which P and Q are mid-points of opposite sides AB and CD (see Fig. 8.18). If AQ intersects DP at S and BQ intersects CP at R, show that: APCQ is a

parallelogram.

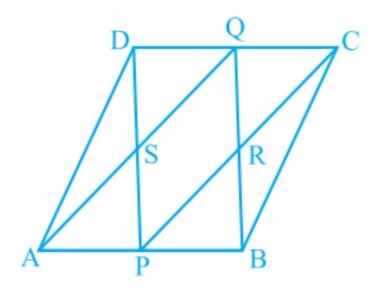


Fig. 8.18

7. ABCD is a parallelogram in which P and Q are mid-points of opposite sides AB and CD (see

Fig. 8.18). If AQ intersects DP at S and BQ intersects CP at R, show that: APCQ is a parallelogram.

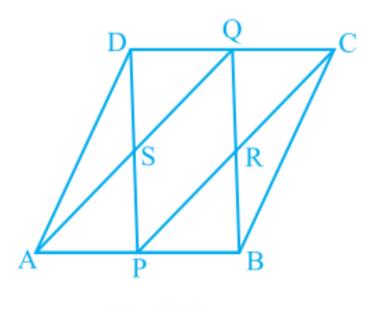


Fig. 8.18

8. ABCD is a parallelogram in which P and Q are mid-points of opposite sides AB and CD (see Fig. 8.18). If AQ intersects DP at S and BQ intersects CP at R, show that: DQBP is a parallelogram.

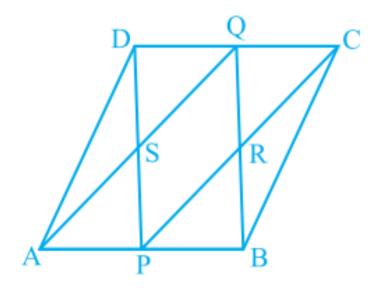
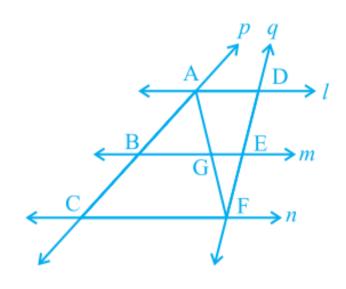


Fig. 8.18

Watch Video Solution


9. In $\triangle ABC$, D, E and F are respectively the mid-points of sides AB, BC and CA . Show that `Delta ABC is divided into four congruent triangles by joining D, E and F.

Watch Video Solution

10. I, m and n are three parallel lines intersected by transversals p and q such that I, m and n cut off equal intercepts AB and BC on

p (see Fig. 8.28). Show that I, m and n cut off equal intercepts DE and EF on q also.

