

MATHS

BOOKS - PSEB

TRIANGLES

1. In quadrilateral ACBD, AC = AD and AB bisects

 $\angle A$ (see Fig. 7.16). Show that

 $\angle DAB = \angle CBA$ (see Fig. 7.17). Prove that (i)

 $riangle ABD\cong riangle BAC$ (ii) BD = AC (iii)

 $\angle ABD = \angle BAC.$

3. AD and BC are equal perpendiculars to a line segment AB (see Fig. 7.18). Show that CD bisects AB.

4. I and m are two parallel lines intersected by another pair of parallel lines p and q (see Fig. 7.19). Show that $\triangle ABC \cong \triangle CDA$

5. Line I is the bisector of an angle $\angle A$ and B is any point on I. BP and BQ are perpendiculars from B to the arms of $\angle A$ (see Fig. 7.20). Show that: (i) $\triangle APB \cong \triangle AQB$ (ii) BP = BQ or B is equidistant from the arms of $\angle A$.

6. In Fig. 7.21, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC =DE.

B D C

7. AB is a line segment and P is its midpoint. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$. Show that AD=BE.

8. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (See Fig.)

Show that : $CM = rac{1}{2}AB$.

9. In an isosclees triangle ABC, with AB = AC, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O show that : OB=OC.

10. In ΔABC , AD is the perpendicular bisector of BC (See Fig.

that ΔABC is an isosceles triangle in which AB = AC.

11. ABC is an isosceles triangle in which altitudes BE and CF are drawn to sides AC and AB respectively (See Fig.

Show

that these altitudes are equal.

12. ABC is a triangle in which altitudes BE and

CF to sides AC and AB are equal (See Fig.

 \blacktriangleright). Show that $\Delta ABE\cong\Delta ACF.$

Watch Video Solution

13. ABC and DBC are two isosceles triangles on

the same base BC (See Fig.

that $\angle ABD = \angle ACD$.

14. ΔABC is an isoscelestriangle in which AB

= AC. Side BA is produced to D such that AD =

AB. Show that $\angle BCD$ is a right angle (see Fig.

15. ABC is a right angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.

Watch Video Solution

16. Show that the angles of an equilateral triangle are 60° each.

).If AD is

extended to intersect BC at P, show that

 $\Delta ABD \cong \Delta ACD.$

extended to intersect BC at P, show that

 $\Delta ABD \cong \Delta ACD.$

19. ΔABC and ΔDBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (See Fig.).If AD is

extended to intersect BC at P, show that AP bisects $\angle A$ as well as $\angle D$.

20. ΔABC and ΔDBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (See Fig. 19288.).If AD is

extended to intersect BC at P, show that AP is

the perpendicular bisector of BC.

21. AD is an altitude of an isosceles triangle

ABC in which AB = AC. Show that:- AD bisects

BC

22. AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that:- AD bisects $\angle A$.

23. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR (See Fig

that : $\Delta ABM \cong \Delta PQN$.

24. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR (See Fig \gg). Show that : $\Delta ABC \cong \Delta PQR$.

25. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

26. ABC is an isosceles triangle with AB = AC.

Draw $AP \perp BC$ to show that $\angle B = \angle C$.

Watch Video Solution

27. Show that in a right angled triangle, the

hypotenuse is the longest side.

28. In Fig.

, sides AB

and AC of ΔABC are extended to points P and Q respectively. Also $\angle PBC < \angle QCB$. Show that AC > AB.

29. In Fig. 7.49, $\angle B < \angle A$ and $\angle C < \angle D$.

Show that AD < BC.

30. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see Fig. 7.50). Show that $\angle A > \angle C$ and

$\angle B > \angle D.$

31. In Fig 7.51, PR > PQ and PS bisects $\angle QPR$.

Prove that $\angle PSR > \angle PSQ$.

32. Show that of all line segments drawn from

a given point not on it, the perpendicular line

segment is the shortest.

33. ABC is a triangle. Locate a point in the interior of ΔABC which is equidistant from all the vertices of ΔABC .

34. In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.

35. In a huge park, people are concentrated at three points A : where there are different slides and swings for children. B : near which a man-made lake is situated. C : which is near to a large parking and exit. Where should an icecream parlour be set up so that maximum number of persons can approach it ?

36. Complete the hexagonal rangoli and the

star Rangolies (see Figs.

filling them with as many equilateral triangles of side 1 cm as you can. Count the number of triangles in each case. Which has more triangles ?

by

1. In Fig. 7.8, OA = OB and OD = OC. Show that (i) $\Delta AOD \cong \Delta BOC$ and (ii) AD || BC.

2. AB is a line segment and line I is its perpendicular bisector. If a point P lies on I, show that P is equidistant from A and B.

Watch Video Solution

3. Line-segment AB is parallel to another linesegment CD. O is the mid-point of AD (see Fig. 7.15). Show that (i) $\Delta AOB \cong \Delta DOC$ (ii) O is also the mid-point of BC.

4. In $\triangle ABC$, the bisector AD of $\angle A$ is perpendicular to side BC (see Fig. 7.27). Show

that AB = AC and ΔABC is isosceles.

5. E and F are respectively the mid-points of equal sides AB and AC of ΔABC (see Fig. 7.28). Show that BF = CE.

Fig. 7.28

6. In an isosceles triangle ABC with AB = AC, D and E are points on BC such that BE = CD (see Fig. 7.29). Show that AD = AE.

Fig. 7.29

7. AB is a line-segment. P and Q are points on opposite sides of AB such that each of them is equidistant from the points A and B (see Fig. 7.37). Show that the line PQ is the

perpendicular bisector of AB.

8. P is a point equidistant from two lines I and m intersecting at point A (see Fig. 7.38). Show that the line AP bisects the angle between them.

Fig. 7.38

9. D is a point on side BC of ΔABC such that

AD = AC (see Fig. 7.47). Show that AB > AD.

