

MATHS

BOOKS - VGS PUBLICATION-BRILLIANT

REAL NUMBERS

Exercise

1. Can we represent all rational numbers pictorially?

2. Represent $\frac{5}{3}$ and $-\frac{5}{3}$ on the number line.

Watch Video Solution

3. Represent $\frac{-3}{4}$ on the number line.

Watch Video Solution

4. Right 0, 7, 10, -4 in $\frac{p}{q}$ form.

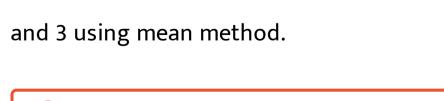
5. Guess my number: Your friend chooses An Integer between 0 and 100. You have to find out that number by asking questions, but your friend can only answer 'Yes' or 'No'. What strategy Would you use?

Watch Video Solution

6. Are the following statements True ? Give reasons for your answers with an example :

Every rational number an integer.

Watch Video Solution


7. Are the following statements True ? Give reasons for your answers with an example: Every integer is a rational number.

Watch Video Solution

8. Are the following statements True ? Give reasons for your answers with an example:

Zero is a rational number. **Watch Video Solution 9.** Find two rational numbers between 3 and 4 by mean method. **Watch Video Solution 10.** Find any five rational numbers between 2

11. Find any 10 rational numbers between $\frac{-3}{11}$ and $\frac{8}{11}$.

Watch Video Solution

12. Express $\frac{7}{16}$, $\frac{10}{7}$ and $\frac{2}{3}$ in decimal from.

Watch Video Solution

13. Express $\frac{1}{17}$ in decimal form.

14. Express $\frac{1}{19}$ in decimal form.

Watch Video Solution

15. Express 3.28 in the form of $\frac{p}{q}$ (where p and q are intgers, $q \neq 0$).

16. Express $1.\ \overline{62}$ in $\frac{p}{q}$ from where $q \neq 0, p, q$ are integers.

Watch Video Solution

17. Find the decimal values of the following:

1

18. Find the decimal values of the following:

$$\frac{1}{2^2}$$

Watch Video Solution

19. Find the decimal values of the following:

 $\frac{1}{5}$

20. Find the decimal values of the following:

$$rac{1}{5 imes2}$$

Watch Video Solution

21. Find the decimal values of the following:

 $\frac{3}{10}$

22. Find the decimal values of the following:

27 25

Watch Video Solution

23. (a) Write any three rational numbers

Watch Video Solution

24. (b) Explain rational number in your own words.

25. Give one example each to the following statements.

i. A number which is rational but not an integer

Watch Video Solution

26. Give one example each to the following statements.

ii. A whole number which is not a natural number

Watch Video Solution

27. Give one example each to the following statements.

iii. An integer which is not a whole number

28. Give one example each to the following statements.

iv. A number which is natural number, whole number, integer and rational number.

Watch Video Solution

29. Give one example each to the following statements.

v. A number which is an integer but not a natural number.

30. Find five rational numbers between 1 and 2.

Watch Video Solution

31. Insert three rational numbers between

$$\frac{3}{5}$$
 and $\frac{2}{3}$

32. Represent $\frac{8}{5}$ and $-\frac{8}{5}$ on the number line.

Watch Video Solution

33. Express the following rational numbers in decimal form.

 $\frac{242}{1000}$

34. Express the following rational numbers in decimal form.

354 500

Watch Video Solution

35. Express the following rational numbers in decimal form.

36. Express the following rational numbers in decimal form.

$$\frac{115}{4}$$

Watch Video Solution

37. Express the following rational numbers in decimal form.

 $\frac{2}{3}$

38. Express the following rational numbers in

 $-rac{25}{36}$

decimal form.

Watch Video Solution

39. Express the following rational numbers in decimal form.

22

40. Express the following rational numbers in decimal form.

$$\frac{11}{9}$$

Watch Video Solution

41. Express each of the following decimals in

 $rac{p}{q}$ form where q
eq 0 and p, q are integers

0.36

42. Express each of the following decimals in

$$rac{p}{q}$$
 form where $q
eq 0$ and p, q are integers

15.4

Watch Video Solution

43. Express each of the following decimals in

 $rac{p}{q}$ form where q
eq 0 and p, q are integers

10.25

44. Express each of the following decimals in

 $rac{p}{}$ form where q
eq 0 and p, q are integers

3.25

Watch Video Solution

45. Express each of the following decimal numbers in $\frac{p}{q}$ form

 $0.\,\bar{5}$

46. Express each of the following decimal numbers in $\frac{p}{q}$ form $3. \, \bar{8}$

Watch Video Solution

47. Express each of the following decimal numbers in $\frac{p}{q}$ form

 $0.\,\overline{36}$

48. Express each of the following decimals in

$$\frac{p}{q}$$
 form: $3.12\overline{7}$

Watch Video Solution

49. Without actually dividing find which of the following are terminating decimals.

$$\frac{3}{25}$$

50. Without actually dividing find which of the following are terminating decimals.

 $\frac{11}{18}$

Watch Video Solution

51. Without actually dividing find which of the following are terminating decimals.

 $\frac{13}{20}$

52. Without actually dividing find which of the following are terminating decimals.

 $\frac{41}{42}$

Watch Video Solution

53. Kurthi said $\sqrt{2}$ can be written $\frac{\sqrt{2}}{1}$ which is in $\frac{p}{q}$ form. So $\sqrt{2}$ is a rational number. Do you agree with her argument?

54. Find the value of $\sqrt{3}$ upto six decimals.

Watch Video Solution

55. Locate $\sqrt{2}$ on number line.

Watch Video Solution

56. Locate $\sqrt{3}$ on number line.

57. Locate $\sqrt{5}$ and $-\sqrt{5}$ on number line. [Hint

$$5^2 = 2^2 + 1^2]$$

Watch Video Solution

58. Find any two irrational numbers between $\frac{1}{5}$ and $\frac{2}{7}$

59. Find any two irrational numbers between $\frac{1}{5}$ and $\frac{2}{7}$

60. Write any two irrational numbers lying between 3 and 4.

Watch Video Solution

61. Examine, whether the following numbers are rational or irrational:

$$\left(3+\sqrt{3}
ight)+\left(3-\sqrt{3}
ight)$$

62. Examine, whether the following numbers are rational or irrational:

$$\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)$$

Watch Video Solution

63. Examine, whether the following numbers are rational or irrational: $\frac{10}{2\sqrt{5}}$

64. Examine, whether the following numbers are rational or irrational:

$$\left(\sqrt{2}+2\right)^2$$

Watch Video Solution

65. Classify the following numbers as rational or irrational.

$$\sqrt{27}$$

66. Classify the following numbers as rational or irrational.

$$\sqrt{441}$$

Watch Video Solution

67. Classify the following numbers as rational or irrational.

30.2323342345...

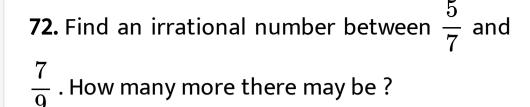
68. Classify the following numbers as rational or irrational.

7.484848...

Watch Video Solution

69. Classify the following numbers as rational or irrational: 11.2132435465

70. Classify the following numbers as rational or irrational.


0.3030030003...

Watch Video Solution

71. Give four examples for rational and irrational numbers?

Watch Video Solution

73. Find two irrational numbers between 0.7 and 0.77

Watch Video Solution

74. Find the value of $\sqrt{5}$ upto 3 decimal places.

75. Find the value of $\sqrt{7}$ upto six decimal places by long division method.

Watch Video Solution

76. Locate $\sqrt{10}$ on the number line.

77. Find atleast two irrational numbers between 2 and 3.

Watch Video Solution

78. State whether the following statements are true or false. Justify your answers.

(i) Every irrational number is a real number.

79. State whether the following statements are true or false. Justify your answers.

(ii) Every rational number is a real number.

Watch Video Solution

80. State whether the following statements are true or false. Justify your answers.

(iii) Every real number need not be a rational number

number

81. State whether the following statements are true or false. Justify your answers.

(iv) n is not irrational if n is a perfect square.

Watch Video Solution

82. State whether the following statements are true or false. Justify your answers: \sqrt{n} is irrational if n is a perfect square

83. State whether the following statements are true or false. Justify your answers.

(vi) All real numbers are irrational.

Watch Video Solution

84. Visualise the representation of $3.5\bar{8}$ on the number line through successive magnification upto 4 decimal places.

85. Visualise 2.874 on the number line, using successive magnification.

Watch Video Solution

86. Visualise $5.\overline{28}$ on the number line, upto 3 decimal places.

87. Hasith said " $5\sqrt{3}+2\sqrt{7}=7\sqrt{10}$ ". Do you agree with him?

Watch Video Solution

88. How can you find the value of $5\sqrt{2} - \sqrt{8}$.

Watch Video Solution

89. Check whether $5\sqrt{2}$ is irrational numbers or not?

90. Check whether $\frac{5}{\sqrt{2}}$ is irrational numbers or not?

91. Check whether $21+\sqrt{3}$ is irrational numbers or not?

92. Check whether x+3 is irrational numbers or not?

Watch Video Solution

93. Subtract $5\sqrt{3}+7\sqrt{5}$ from $3\sqrt{5}-7\sqrt{3}$

Watch Video Solution

94. Multiply $6\sqrt{3}$ with $13\sqrt{3}$

95. Simplify the following expressions:

$$\left(3+\sqrt{3}
ight)\left(2+\sqrt{2}
ight)$$

Watch Video Solution

96. Simplify the following expressions:

$$(2+\sqrt{3})(2-\sqrt{3})$$

97. Simplify the following expressions:

$$\left(\sqrt{5}+\sqrt{2}\right)^2$$

Watch Video Solution

98. Simplify the following expressions:

$$\left(\sqrt{5}-\sqrt{2}
ight)\left(\sqrt{5}+\sqrt{2}
ight)$$

100. Find rationalising factors of the denominators of $\frac{1}{2\sqrt{3}}$

101. Find rationalising factors of the denominators of $\frac{3}{\sqrt{5}}$

102. Find rationalising factors of the denominators of $\frac{1}{\sqrt{8}}$

Watch Video Solution

103. Rationalise the denominator of $\frac{1}{4+\sqrt{5}}$

Watch Video Solution

104. If $x=7+4\sqrt{3}$ then find the value of

Watch Video Solution

105. Simiplify $\dfrac{1}{7+4\sqrt{3}}+\dfrac{1}{2+\sqrt{5}}$

Watch Video Solution

106. Simplify

 $2^{\frac{2}{3}}.2^{\frac{1}{3}}$

107. Simplify

$$\left(5^{\frac{1}{7}}\right)^4$$

Watch Video Solution

 $108. \ \frac{3^{1/5}}{3^{1/3}} =$

Watch Video Solution

109. Simplify

$$7^{\frac{1}{17}}.11^{\frac{1}{17}}$$

$$(16)^{\frac{1}{2}}$$

Watch Video Solution

111.
$$(128)^{1/7}$$
 =

112. Simplify:

$$(343)^{\frac{1}{5}}$$

Watch Video Solution

113. Write the following surds in exponential

form

$$\sqrt{2}$$

114. Write the following surds in exponential form

Watch Video Solution

115. Write the following surds in exponential form

 $\sqrt[5]{20}$

116. Write the following surds in exponential

form

$$\sqrt[17]{19}$$

Watch Video Solution

117. Write the surds in radical form:

$$5^{\frac{1}{7}}$$

118. Write the surds in radical form:

 $17^{\frac{1}{6}}$

Watch Video Solution

119. Write the surds in radical form:

 $5^{\frac{2}{3}}$

120. Write the surds in radical form:

 $142^{\frac{1}{2}}$

Watch Video Solution

121. Simplify the following expressions.

$$\left(5+\sqrt{7}\right)\left(2+\sqrt{5}\right)$$

122. Simplify the following expressions.

$$\left(5+\sqrt{5}
ight)\left(5-\sqrt{5}
ight)$$

Watch Video Solution

123. Simplify the following expressions.

$$\left(\sqrt{3}+\sqrt{7}\right)^2$$

124. Simplify the following expressions.

$$\left(\sqrt{11}+\sqrt{7}
ight)\left(\sqrt{11}-\sqrt{7}
ight)$$

Watch Video Solution

125. Classify the following numbers as rational or irrational.

$$5-\sqrt{3}$$

126. Classify the following numbers as rational or irrational.

$$\sqrt{3} + \sqrt{2}$$

Watch Video Solution

127. Classify the following numbers as rational or irrational.

$$\left(\sqrt{2}-2\right)^2$$

128. Classify the following numbers as rational or irrational.

$$\frac{2\sqrt{7}}{7\sqrt{7}}$$

Watch Video Solution

129. Classify the following numbers as rational or irrational.

 2π

130. Classify the following numbers as rational or irrational.

$$\frac{1}{\sqrt{3}}$$

Watch Video Solution

131. Classify the following numbers as rational or irrational.

$$\left(2+\sqrt{2}
ight)\left(2-\sqrt{2}
ight)$$

132. In the following equations, find whether variables x, y, z etc. represent rational or irrational numbers

$$x^2 = 7$$

Watch Video Solution

133. In the following equations, find whether variables x, y, z etc. represent rational or irrational numbers

$$y^2 = 16$$

Watch Video Solution

134. In the following equations, find whether variables x, y, z etc. represent rational or irrational numbers

$$z^2 = 0.02$$

Watch Video Solution

135. In the following equations, find whether variables x, y, z etc. represent rational or

irrational numbers

$$u^2=\frac{17}{4}$$

Watch Video Solution

136. In the following equations, find whether variables x, y, z etc. represent rational or irrational numbers

$$w^2 = 27$$

137. In the following equations, find whether variables x, y, z etc. represent rational or irrational numbers

$$t^4 = 256$$

Watch Video Solution

138. Every surd is an irrational, but every irrational need not be a surd. Justify your answer.

139. Rationalise the denominators of the following: $\frac{1}{3+\sqrt{2}}$

Watch Video Solution

140. Rationalise the denominators of the following:

$$\frac{1}{\sqrt{7}-\sqrt{6}}$$

141. Rationalise the denominators of the following:

$$\frac{1}{\sqrt{7}}$$

Watch Video Solution

142. Rationalise the denominators of the following:

$$\frac{\sqrt{6}}{\sqrt{3}-\sqrt{2}}$$

143. Simplify each of the following by rationalising the denominator:

$$\frac{6-4\sqrt{2}}{6+4\sqrt{2}}$$

Watch Video Solution

144. Simplify each of the following by rationalising the denominator:

$$\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}$$

145. Simplify each of the following by

$$\frac{1}{3\sqrt{2}-2\sqrt{3}}$$

Watch Video Solution

rationalising the denominator:

146. Simplify each of the following by rationalising the denominator:

$$\frac{3\sqrt{5}-\sqrt{7}}{3\sqrt{3}+\sqrt{2}}$$

147. Find the value of $\dfrac{\sqrt{10}-\sqrt{5}}{2\sqrt{2}}$ upto three decimal places. (take $\sqrt{2}=1.414$ and $\sqrt{5} = 2.236$)

Watch Video Solution

148. Find:

 $64^{\frac{1}{6}}$

 $32^{\frac{1}{5}}$

Watch Video Solution

150. Find:

 $625^{\frac{1}{4}}$

 $16^{\frac{3}{2}}$

Watch Video Solution

152. Find:

 $243^{\frac{2}{5}}$

153. Find:

$$(46656)^{rac{-1}{6}}$$

Watch Video Solution

154. Simplify : $\sqrt[4]{81} - 8\sqrt[3]{343} + 15\sqrt[5]{32} + \sqrt{225}$

Watch Video Solution

155. If 'a' and 'b' are rational numbers, find the value of a and b in each of the following

equations.

$$rac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=a+b\sqrt{6}$$

Watch Video Solution

156. If 'a' and 'b' are rational numbers, find the value of a and b in each of the following equations.

$$rac{\sqrt{5}+\sqrt{3}}{2\sqrt{5}-3\sqrt{3}}=a-b\sqrt{15}$$

157. Find the square root of $11+2\sqrt{30}$

Watch Video Solution

158. What is meant by a rational number?

Watch Video Solution

159. What meant by an irrational number?

160. Find a rational number between 2 and 3 by mean method.

Watch Video Solution

161. Express $\frac{27}{25}$ In decimal form.

Watch Video Solution

162. Express the following rational numbers in decimal form.

25

Watch Video Solution

163. Express 8.625 in $\frac{p}{q}$ form

Watch Video Solution

- **164.** Express the following rational numbers in decimal form.
 - 11 9

165. Write any four rational numbers.

Watch Video Solution

166. Write any three Irrational numbers.

Watch Video Solution

167. Find an irrational number between 4 and

5.

168. Examine whether $(3+\sqrt{2})(3-\sqrt{2})$ is a rational or irrational number.

169. Examine, whether $\frac{30}{3\sqrt{5}}$ is a rational or irrational number.

170. Simplify the following expressions:

$$\left(\sqrt{5}-\sqrt{2}
ight)\left(\sqrt{5}+\sqrt{2}
ight)$$

Watch Video Solution

171. Rationalise the denominators of the following:

$$\frac{1}{\sqrt{7}-\sqrt{6}}$$

$$625^{\frac{1}{4}}$$

Watch Video Solution

173. Find:

 $243^{\frac{2}{5}}$

174. Find two rational numbers between 5 and 6 by mean method.

Watch Video Solution

175. Express $1.\overline{46}$ in the $\frac{p}{q}$ form where $q \neq 0$, p, q are integers.

176. Examine, whether the following statements are rational or irrational: $\left(\sqrt{3}+1\right)^2$

Watch Video Solution

177. Examine, whether the following statements are rational or irrational: $\left(5+\sqrt{2}\right)\left(5-\sqrt{2}\right)$

178. Simplify: $\sqrt[4]{256} - \sqrt[3]{125} + \sqrt[5]{32}$

Watch Video Solution

179. Simplify: $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$

Watch Video Solution

180. Explain, how irrational nos. differ from rational nos.? Give four examples each.

181. Rationalise the denominator of $\frac{5}{\sqrt{3}+\sqrt{2}}$

182.
$$\frac{x^2-1}{x+1}=4$$
 ,then find the value of 'x'.

183. If x=2, y =1 is a solution of the equation

2x+by=5 , find the value of 'b'.

184. Write the formulae of area and volume of different solid shapes. Find out the variables and constants in them.

Watch Video Solution

185. What is the general form of the points which lie on X-axis? Write any four points lie on X-axis.

Watch Video Solution

186. The opposite angles of a parallelogram are $(3x-2)^\circ$ and $(x+48)^\circ$.

Find the measure of each angle of the parallelogram.

187. Factorise $8x^3 + y^3 + z^3 - 6xyz$, using identity.

188. Locate $\sqrt{10}$ on the number line.

Watch Video Solution

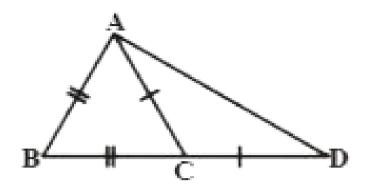
189. State the obscissa and ordinate of the following points and describe the position of each point P(5,6).

190. State the obscissa and ordinate of the following points and describe the position of each point Q(2,-5).

Watch Video Solution

191. Simplify : $\sqrt[3]{625} - 4\sqrt[3]{343} - 5\sqrt[4]{81} + 6\sqrt[5]{32}$

192. Show that the figure formed by joining the midpoints of sides of a rhombus successively is a rectangle.



Watch Video Solution

193. In the adjacent figure,

AB = BC and AC = CD. Prove that :

 $\angle BAD$: $\angle ADB = 3:1$.

194. Visualise the representation of $4.\overline{\,35}$ on the number line through successive magnification upto 4 decimal places.

195. In a mixture of 28 litres, the ratio of milk and water is 5:2, set up the equation be tween the mixture and milk. Draw its graph. By observing the graph, find the quantity of milk in the mixture.

Watch Video Solution

196. If $p^2+q^2+r^2=0$, show that $p^6+q^6+r^6=3p^2q^2r^2$

197. Plot the points A(2,2), B(9,2), C(8,5) and D(3,5) in a graph sheet. Join all the points to make it a trapezium. Find Its area.

198.
$$\sqrt{5+2\sqrt{6}}$$
=

A.
$$3+\sqrt{2}$$

B.
$$\sqrt{3} + \sqrt{2}$$

C.
$$3 - \sqrt{2}$$

D.
$$\sqrt{3}-\sqrt{2}$$

Answer:

Watch Video Solution

199. The coefficients of ' x^2 ' and 'x' in the product of (2x -8), (7- 3x) is ____

A. 2,-10

B. 6,10

C. 3,-20

D. -6,38

Answer:

Watch Video Solution

200. Which of the following is not a solution of the equation x+2y=6?

A. (2,1)

B.(2,2)

C.(0,3)

D. (6,0)

Answer:

Watch Video Solution

201. Diagonals are perpendicular in ____

- A. Square, Rectangle
- B. Rectangle, Parallelogram
- C. Square, Rhombus
- D. Trapezium, Rhombus

Answer:

Watch Video Solution

202. Equation of a line parallel to y-axis is ____

Answer:

203. In ΔABC , which of the following is incorrect?

$$\mathsf{A.}\,AB + BC < AC$$

$$B. AB - AC > AC$$

$$\mathsf{C}.\,BC + CA < AB$$

$$\mathsf{D.}\,AB + BC > AC$$

Answer:

Watch Video Solution

204. Which of the following point does not lie on the y-axis?

A.(0,2)

B. (0,-3)

C. (-2,0)

D.(0,4)

Answer:

205. The remainder when $2x^3 - 3x + 5$ is divided by (x-2).

A. 27

B. 22

C. 15

D. -15

Answer:

206. Which of the following is not true?

A.
$$(\,-2,\,-3)
ightarrow Q_3$$

$$\texttt{B.}\,(5,\ -10)\rightarrow \textit{Q}_{1}$$

C.
$$(\,-4,5)
ightarrow Q_2$$

D.
$$(2,~-6) o Q_4$$

Answer:

207.
$$1m^2 = __ cm^2$$
.

A. 10000

B. 1000

C. 100

D. 10

Answer:

208. A rational number equivalent to $\frac{-3}{4}$

A.
$$\frac{-4}{3}$$

$$\mathsf{B.}\,\frac{-4}{5}$$

$$\mathsf{C.}\ \frac{3}{4}$$

$$D. \frac{-6}{8}$$

Answer:

209. $\frac{-2}{3}$ lies on ____ on the number line.

A. right side of the zero

B. left side of the zero

C. zero

D. can't be determined

Answer:

210. Which of the following is false?

- A. Every rational number is a natural number
- B. Every rational number is a whole number
- C. Every rational number is an integer
- D. Every integer is a rational number

Answer:

211. A rational number between 5 and 6 is

$$\mathsf{A.}\;\frac{9}{2}$$

$$\mathsf{B.}\;\frac{10}{2}$$

$$\mathsf{C.}\ \frac{11}{2}$$

D.
$$\frac{12}{2}$$

Answer:

A.
$$\frac{3}{8}$$

$$\mathsf{B.}\;\frac{2}{9}$$

c.
$$\frac{3}{7}$$

D.
$$\frac{1}{3}$$

Answer:

Watch Video Solution

213. The decimal form of 1/18 is

A. $0.0\bar{5}$

B. 0. $\overline{05}$

C. $0.\bar{5}$

D. 0.06

Answer:

Watch Video Solution

214. 1.25 in p/q form

۲. $\frac{3}{5}$

 $\frac{3}{4}$

$$\mathsf{C.}\;\frac{5}{6}$$

D.
$$\frac{6}{5}$$

Watch Video Solution

215. If a and b are any two rational numbers then a rational number between a and b is

A.a+1

B. b-1

$$\mathsf{C.}\,\frac{a+b}{2}$$

 $D.a \cdot b$

Answer:

Watch Video Solution

216. If n is a natural number other than a perfect square then \sqrt{n} is ___ number.

A. rational

B. irrational

C. natural

D. none

Answer:

Watch Video Solution

217. If 'x' is an irrational number then x + 2 is

____ number.

A. natural

B. rational

- C. irrational
- D. can't be determined

Watch Video Solution

218. If 'x' is an irrational number then x - 3 is

____ number.

- A. rational
- B. natural

- C. irrational
- D. Complex

Watch Video Solution

219. Number which can't be expressed in p/q form are ____ numbers.

- A. irrational
- B. rational

- C. whole
- D. natural

Watch Video Solution

220. The combination of Q and S given the set of ___ numbers.

- A. natural
 - B. integers

C. whole

D. real

Answer:

Watch Video Solution

221. $(2+\sqrt{2})(2-\sqrt{2})$ is a ____ number.

A. irrational

B. rational

C. can't be determined

D. none

Answer:

222.
$$\sqrt{\frac{a}{b}}$$
 = A. $\frac{\sqrt{a}}{b}$

A.
$$\frac{\sqrt{a}}{b}$$

B.
$$\frac{a}{\sqrt{b}}$$

B.
$$\frac{a}{\sqrt{b}}$$
C. $\frac{\sqrt{a}}{\sqrt{b}}$
D. $\frac{a}{b}$

D.
$$\frac{a}{b}$$

Watch Video Solution

223.
$$(\sqrt{a}+b)(\sqrt{a}-b)$$
 =

A.
$$a^2 - b^2$$

B. a-b

 $\mathsf{C}.\,a^2-b$

D. $a - b^2$

Answer:

224.
$$(\sqrt{2} + \sqrt{5})^2$$
 =

A. 10

B.
$$7 + 2\sqrt{10}$$

$$\mathsf{C.}\,7-2\sqrt{10}$$

D.
$$2\sqrt{10}$$

Answer:

225.
$$(7+\sqrt{2})(7-\sqrt{2})=$$

A. 45

B. 5

C. 3

D. 47

Answer:

226. The rationalising factor of $\frac{1}{5\sqrt{2}}$ is

A.
$$\frac{1}{5\sqrt{2}}$$

B.
$$5\sqrt{2}$$

$$\mathsf{C}.\,\sqrt{2}$$

D. 5

Answer:

227. The rationalising factor of $\frac{1}{\sqrt{27}}$ is

A.
$$\frac{1}{\sqrt{27}}$$

B.
$$\sqrt{27}$$

C.
$$\sqrt{3}$$

Answer:

228.
$$\left(\frac{3}{4}\right)^{-3} \times \left(\frac{3}{4}\right)^{3} \times \left(\frac{3}{4}\right)^{6} =$$

A.
$$\left(rac{3}{4}
ight)^{-54}$$

B.
$$\left(\frac{3}{4}\right)^6$$

$$\operatorname{C.}\left(\frac{3}{4}\right)^{12}$$

D.
$$\left(\frac{3}{4}\right)^{-6}$$

229.
$$\sqrt[5]{32}$$
 =

$$\mathsf{A.}\ 32^5$$

$$\mathsf{C.}\,4\sqrt{2}$$

D.
$$2\sqrt{2}$$

230.
$$(128)^{1/7}$$
 =

D.
$$8\sqrt{2}$$

231. Radical form of $27^{1/5}$ is

A.
$$\sqrt{27}$$

B.
$$\sqrt[3]{27}$$

C.
$$\sqrt[4]{27}$$

D.
$$\sqrt[5]{27}$$

Answer:

232.
$$a^{\frac{1}{n}}$$
=

A.
$$\sqrt[n]{a}$$

233. The Rationalising factor of $\dfrac{1}{5-\sqrt{3}}$ is

A.
$$(5 + \sqrt{3})$$

B.
$$\sqrt{3} - 5$$

$$\mathsf{C.} \; \frac{1}{5+\sqrt{3}}$$

D.
$$\frac{1}{\sqrt{3}-5}$$

Answer:

234.
$$\sqrt[n]{a^m}$$
=

A.
$$a^{m/n}$$

B.
$$a^{n/m}$$

$$\mathsf{C.}\,a^{mn}$$

D.
$$a^{m-n}$$

235. If $x^3=10$, then ${\sf x}$ is

A. a rational number

B. an irrational number

C. a perfect number

D. an even number

Answer:

236. If $p^3=216$, then p is

A. an odd number

B. an irrational number

C. a perfect number

D. a rational number

Answer:

237. The radical form of $15^{2/3}$

A.
$$\sqrt[3]{30}$$

B.
$$\sqrt[3]{15}$$

C.
$$\sqrt[3]{225}$$

D.
$$\sqrt[3]{45}$$

Answer:

238. The radical form of $6^{2/3}$

A.
$$\sqrt[3]{36}$$

$$\mathrm{B.}~\sqrt{36}$$

$$\mathsf{C.}\,\sqrt{48}$$

D.
$$\sqrt{216}$$

Answer:

239. The exponential form of $\sqrt[4]{81}$ is

- A. $9^{1/4}$
- B. $9^{2/4}$
- $\mathsf{C.}\,3^{1/4}$
- D. $3^{1/8}$

Answer:

240. The exponential form of $\sqrt[35]{105}$ is

A. $3^{1/35}$

B. $5^{1/35}$

 $\mathsf{C.}\,7^{1\,/\,35}$

D. $105^{1/35}$

Answer:

241.
$$(\sqrt{a}+b)(\sqrt{a}-b)$$
 =

A.
$$a^2 - b^2$$

B.
$$a-b^2$$

D.
$$a + b^2$$

242.
$$(\sqrt{x} + y)^2$$
=

A.
$$x + y + 2\sqrt{xy}$$

B.
$$\sqrt{x} + y^2 + 2xy$$

C.
$$x+y^2+2\sqrt{x}\cdot y$$

D.
$$x^2+y^2+2\sqrt{x}\cdot y$$

243.
$$(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) =$$

A. 1

B. 0

C. 5

D. 13

Answer:

244.
$$(-8)^{7/5} \times (-8)^{-4/5} \times (-8)^{-3/5} =$$

A. 0

B. -8

C. 1

D. -512

Answer:

245. The decimal form of $0.\overline{32}$ is

A.
$$\frac{32}{100}$$

B.
$$\frac{32}{99}$$

c.
$$\frac{32}{90}$$

D.
$$\frac{32}{50}$$

Answer:

246.
$$\sqrt{9} \times \sqrt{16}$$
 =

A.
$$\sqrt{25}$$

$$\mathsf{B.}\;\frac{3}{4}$$

247.
$$\sqrt{a}\div\sqrt{b}$$
=

A.
$$\sqrt{ab}$$

B.
$$a\sqrt{b}$$

C.
$$\sqrt{ab}$$

D.
$$\sqrt{\frac{a}{b}}$$

248.
$$\left(\frac{-2}{3}\right)^{2/7} \times \left(\frac{-2}{3}\right)^{5/7} =$$

A. 1

$$\mathsf{B.}\,\frac{-2}{3}$$

C. 0

D.
$$\left(\frac{-2}{3}\right)^{2/5}$$

Answer:

249. If
$$\sqrt{3}=1.732$$
 , then $\sqrt{27}$ =

A.
$$3 imes 1.732$$

$$\mathrm{B.}\,9\times1.732$$

C.
$$27 imes 1.732$$

$$\text{D.}~6\times1.732$$

250. Whose value is 11.18 if $\sqrt{5}=2.236$?

A.
$$\sqrt{25}$$

B.
$$\sqrt{75}$$

C.
$$\sqrt{125}$$

D.
$$\sqrt{250}$$

Answer:

251. The decimal value of $\frac{22}{7}$ is

A. 3.421

B. 3.142

C. 3.412

D. 3.124

Answer:

252. If $\sqrt{10}=3.162$, then $\sqrt{40}$ =

A. 6.324

B. 9.486

C. 12.648

D. 31.62

Answer:

253.
$$\sqrt[5]{32}^{-2}$$
=

A. 2

B. 4

C. 6

D. 1/2

Answer:

254. Rationalising factor of $\sqrt{5}+\sqrt{6}$ is

A.
$$\sqrt{5}-6$$

B.
$$5-\sqrt{6}$$

C.
$$\sqrt{5}-\sqrt{6}$$

D.
$$5+\sqrt{6}$$

Answer:

255. Express 3.25 in the form of $p \, / \, q$

A.
$$\frac{13}{4}$$

B.
$$\frac{65}{2}$$

c.
$$\frac{13}{40}$$

$$\mathsf{D.}\;\frac{13}{20}$$

Answer:

256. If
$$a^n=b$$
 , then $\sqrt[n]{b}$ =

A. n

B. a

C. $b^{1/n}$

D. $a^{1/n}$

Answer:

257.
$$\frac{3^{1/5}}{3^{1/3}}$$
 =

A.
$$3^{1/15}$$

B.
$$3^{2/15}$$

$$\mathsf{C.}\,3^{-2/15}$$

D.
$$3^{8/15}$$

Answer:

258. The collection of negative numbers and whole numbers is denoted by

- A. Q
- B. W
- C. Z or I
- D. N

Answer:

259. If a and b are any two rational numbers

then a rational number between a and b is

- A. a-b
- B. b-a
- C. \sqrt{ab}
- D. $\frac{a+b}{2}$

Answer:

260.
$$\frac{2}{3}$$
 =

A. 0.
$$\bar{6}$$

B. 0.66

C. 0.666

D. 0.6

Answer:

261. The decimal value of $\frac{1}{2^3}$ is

A. 0.5

B. 0.25

C. 0.125

D. 1.125

Answer:

262. π is

- A. a natural number
- B. an irrational number
- C. a rational number
- D. none of these

Answer:

263. Find the area of rectangle whose length is

4.7 an and breadth is 2 cm.

A.
$$\sqrt{3} - 1$$

B.
$$(\sqrt{3} + \sqrt{2})$$

C.
$$(\sqrt{3}-\sqrt{2})$$

D. lb

Answer:

264. $\sqrt{5}$ lies between

A. 1 and 2

B. 2 and 3

C. 3 and 4

D. 0 and 1

Answer:

265. A Rectangular park dimensions are $(3+\sqrt{2})$ and $(2+\sqrt{2})$ units then the area of that park in square unit.

A.
$$8+5\sqrt{2}$$

$$\mathsf{B.}\,5+2\sqrt{2}$$

C.
$$13\sqrt{2}$$

D.
$$5 + \sqrt{2}$$

Answer:

266. The value of 1.999___ in the form of $\frac{p}{q}$ (p, q are integers, $q \neq 0$)

A.
$$\frac{1999}{1000}$$

B. 2

$$\mathsf{C.}\ \frac{1}{9}$$

D.
$$\frac{19}{10}$$

Answer:

267. If 'x' is a positive real number and $x^2=2$

then the value of x^3 is

- A. $2\sqrt{2}$
- B. $3\sqrt{2}$
- C. 4
- D. 1,2,4,3

Answer:

268. If $\sqrt{10}=3.162$, then the value of $\dfrac{1}{\sqrt{10}}$ is

A. 31.62

B. 3.162

C. 0.3162

D. 316.2

Answer:

269. If
$$x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$
 then the value of x+y is

A. 5

B.
$$5+2\sqrt{6}$$

C. 10

D.
$$5-2\sqrt{6}$$

Answer:

