

MATHS

BOOKS - R G PUBLICATION

POLYNOMIALS

1. The graphs of y=P(x) are given below, for some polynomials P(x). Find the number of

zeroes of P(x), in each case.

Watch Video Solution

2. The graphs of y=P(x) are given below, for some polynomials P(x). Find the number of

zeroes of P(x), in each case.

Watch Video Solution

Watch Video Solution

Watch Video Solution

Watch Video Solution

Watch Video Solution

7. Find the zeroes of the following quadratic

polynomials and verify the relationship

between the zeroes and the coefficients:(i)

$$x^2-2x-8$$

Watch Video Solution

8. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:(ii) $4s^2 - 4s + 1$

9. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:(iii) $6x^2 - 3 - 7x$

Watch Video Solution

10. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:(iv) $4u^2 + 8u$

11. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:(v) t^2-15

Watch Video Solution

12. Find the zeroes of the following quadratic polynomials and verify the relationship

between the zeroes and the coefficients:(vi)

$$3x^3 - x - 4$$

13. Find a quadratic polynomial each with the

given numbers as the sum and product of its

zeroes respectively:(i)1/4,-1

14. Find a quadratic polynomial each with the

given numbers as the sum and product of its zeroes respectively:(ii) $\sqrt{2}, \frac{1}{3}$

15. Find a quadratic polynomial each with the

given numbers as the sum and product of its

zeroes respectively:(iii) $0, \sqrt{5}$

16. Find a quadratic polynomial each with the given numbers as the sum and product of its

zeroes respectively:(iv)1,1

Watch Video Solution

17. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively:(v) -1/4,1/4

18. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively:(vi) 4,1

Watch Video Solution

19. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:(i) $p(x)=x^3$ -

3x^{2+5x-3},g(x)=x²⁻²

20. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:(ii) $p(x) = x^4 - 3x^2 + 4x + 5, g(x) = x^2 + 1 - x$

Watch Video Solution

21. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:(iii) $p(x) = x^4 - 5x + 6, g(x) = 2 - x^2$

22. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial: (i) $t^2 - 3$, $2t^4 + 3t^3 - 2t^2 - 9t - 12$

Watch Video Solution

23. Check whether the first polynomial is a factor of the second polynomial by dividing

the second polynomial by the first polynomial: (ii) $x^2 + 3x + 1$, $3x^4 + 5x^3 - 7x^2 + 2x + 2$

Watch Video Solution

24. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial: (iii) $x^3 - 3x + 1$, $x^5 - 4x^3 + x^2 + 3x + 1$

25. Obtain all other zeroes of $3x^4 + 6x^3 - 2x^2 - 10x - 5$ Watch Video Solution

26. On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x),the quotient and remainder were x-2 and -2x+4,respectively,Find g(x)

27. Give examples of polynomials p(x),g(x),q(x)and r(x),which satisfy the division algorithmand (i) degp(x)=degq(x)

28. Give examples of polynomials p(x),g(x),q(x)and r(x),which satisfy the division algorithm and (ii)deg q(x)=deg r(x)

29. Give examples of polynomials p(x),g(x),q(x) and r(x),which satisfy the division algorithm and (iii)deg r(x)=0

Watch Video Solution

30. Verify that the numbers given along side of the cubic polynomial below are their zeroes.Also verify the relationship between the zeroes and the coefficients in each case:(i) $2x^3 + x^2 - 5x + 2, \frac{1}{2}, 1, -2$

31. Verify that the numbers given along side of the cubic polynomial below are their zeroes.Also verify the relationship between the zeroes and the coefficients in each case:(ii) $x^3 - 4x^2 + 5x - 2$, 2,1,1

Watch Video Solution

32. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a

time, and the product of its zeroes as 2,-7,-14

respectively.

.find other zeroes.

Watch Video Solution

36. If lpha, eta are the zeroes of the polynomial $f(x) = x^2 + x + 1$ then $rac{1}{lpha} + rac{1}{eta}$ is_____

A. 0

B. -1

C. 1

D. None of these

Answer:

37. The polynomial is

A.
$$\sqrt{x} + rac{1}{\sqrt{x}}$$

B. $x^2 - 5x + 6\sqrt{x} + 3$
C. $x^{rac{3}{2}} - x + x^{rac{1}{2}} + 1$

D. None of these

38. The zeros of the polynomial $x^2-\sqrt{2}x-12$ are a) $3\sqrt{2}, 2\sqrt{2}$ b) $\sqrt{2}, -\sqrt{2}$ c) $3\sqrt{2}, -2\sqrt{2}$ d) $-3\sqrt{2}, 2\sqrt{2}$ A. $3\sqrt{2}, 2\sqrt{2}$ $\mathsf{B}.\ \sqrt{2},\ -\sqrt{2}$ C. $3\sqrt{2}, -2\sqrt{2}$ D. $-3\sqrt{2}, 2\sqrt{2}$

39. The zeros of the quadratic polynomial $x^2 + 99x + 127$ are a)equal b)positive c)Negative d)One positive and one negative

A. equal

B. positive

C. Negative

D. One positive and one negative

40. The zeros of the quadratic polynomial $x^2+88x+125$ are

A. Positive

B. Negative

C. equal

D. One positive and one negative

41. If
$$p(x) = ax^2 + bx + c$$
 has no real zeroes
and a+b+c<0,then

A. Cgt0

- B. C=0
- C. Clt0
- D. None of these

42. If the zeroes of the quadratic polynomial $ax^2 + bx + c$,where a
eq 0 and c
eq 0 are equal then

A. c and a have the same sign

B. c and b have the same sign

C. c and a have opposite sign

D. c and have opposite sign

43. If one of the zeroes of the quadratic polynomial $x^2 + bx + c$ is negative of the other, then a) b=0 and c is negative b) b=0 and c is positive

c)b
eq 0 and c is positive d) b
eq 0 and c is negative

A. b=0 and c is negative

B. b=0 and c is positive

 $\mathsf{C}.b \neq 0$ and *cispositive*

D. `b!=0 and c is negative

Answer:

Watch Video Solution

44. If one zero of the quadratic polynomial $kx^2 + 3x + k$ is 2,then the value of k is

A.
$$\frac{6}{5}$$

Watch Video Solution

45. If -4 is a zero of the polynomial `x^2-x-x-

(2+2k) then the value of k is

B. 3

C. 9

D. -9

Answer:

46. If one zero of the polynomial
$$(k-1)x^2 + kx + 1$$
 is -4,then the value of k is

A.
$$\frac{4}{3}$$

B.
$$\frac{-4}{3}$$

C. $\frac{5}{4}$
D. $\frac{-5}{4}$

Watch Video Solution

47. If one zero of $3x^2 + 8x + k$ be the reciprocal of the other then the value of k is a)3 b)-3 c) $\frac{1}{3}$ d) $\frac{-1}{3}$ A. 3

B. -3
C.
$$\frac{1}{3}$$

D. $\frac{-1}{3}$

Answer:

of the other then the value of k is

a)1 b)2 c)-2 d)-1

A. 1

B. 2

C. -2

D. -1

49. If the polynomial $f(x) = ax^3 + bx - c$ is divisible by $g(x) = x^2 + bx + c$,then the value of ab is

A. 1

B. -1

C. 1/c

D.
$$\frac{-1}{c}$$

50. If
$$\alpha, \beta$$
 are the zeroes of
 $f(x) = 2x^2 + 6x - 6$, then
 $a)\alpha + \beta + \alpha\beta = 0$ $b)\alpha + \beta = \alpha\beta$ $c)$
 $\alpha + \beta > \alpha\beta d)\alpha + \beta < \alpha\beta$
A. $\alpha + \beta + \alpha\beta = 0$
B. $\alpha + \beta = \alpha\beta$
C. $\alpha + \beta > \alpha\beta$
D. $\alpha + \beta < \alpha\beta$

51. If lpha, eta are the zeroes of $2x^2 + 5x - 9$,then the value of $lpha \cdot eta$ is

A.
$$\frac{5}{2}$$

B. $\frac{-5}{2}$
C. $\frac{9}{2}$
D. $(-)\frac{9}{2}$

Answer:

52. If lpha,eta are the zeroes of polynomial $f(x)=x^2-p(x+1)-c$,then(lpha+1)(eta+1)=

A. c

B. 1+c

С. 1-с

D. c-1

Answer:

53. If α , β be the zeroes of polynomial $x^2 - 8x + k$ such that $\alpha^2 + \beta^2 = 40$ then the value of k will be a) 6 b) 9 c) 12 d) - 12

B. 9

C. 12

D. -12

55. Two zeros of polynomial $ax^3 + bx^2 + cx + d$ are zero then its third zero is a/b b/a -b/a d/c A. a/b

B. b/a

C. -b/a

D. d/c

Answer:

A.
$$2p^3=pq+r$$

$$\mathsf{B.}\,2p^3 = pq - r$$

C.
$$p^3 = pq - r$$

D. None of these

a)a natural number b)a rational number c)an

irrational number d)an integer

A. a natural number

B. a rational number

C. an irrational number

D. an integer

Answer:

58. If lpha, eta, are the zeroes of the polynomial $ax^2 + bx + c$,then $lpha^2 + eta^2$ =

A.
$$\displaystyle rac{b^2-2ac}{a^2}$$

B. $\displaystyle rac{a^2-2bc}{b^2}$
C. $\displaystyle rac{b^2+2ac}{a^2}$
D. $\displaystyle rac{a^2+2bc}{b^2}$

Answer:

59. If lpha,eta, be the zeroes of the polynomial $2x^2+5x+k$ such that $lpha^2+eta^2+lphaeta=rac{21}{4}$

then k=

A. 2

B. -2

C. 3

D. -3

60. If two zeroes of x^3+x^2-5x-5 are $\sqrt{5}$ and $-\sqrt{5}$ then its third zero is a)1 b)2 c)-1 d)-2 A. 1 B. 2 C. -1 D. -2

61. If $lpha, eta, \gamma$ be the zeroes of the polynomial $x^3 - 6x^2 - x + 30$, then $lphaeta + eta \gamma + \gamma lpha$ =?

A. 1

B. -1

C. -5

D. 30

Answer:

63. If x+2 is a factor of $x^2 + ax + 2b$ and a+b=4 then a=-1,b=5 a=5,b=-1 a=1,b=3 a=3,b=1 A. a=-1,b=5 B. b=5,b=-1 C. a=1,b=3 D. a=3,b=1

64. If
$$\alpha$$
, β , γ ,are the zeroes of the polynomial
 $x^3 - px^2 + qx - r$,then $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}$ =?
p/r
-p/r
-r/p

B. -p/r

C. r/p

D. -r/p

Answer:

Watch Video Solution

65. A Quadratic polynomial has three

zeroes.True or False

66. Polynomial $ax^2 + c$ has two zeroes which are equal in magnitude but opposite in sign. True or False

67. Each polynomial has at least one zero. True

or False

68. State true or false:

We cannot find zeroes of polynomial $x^4 + 16$

69. Graph of polynomial $x^2 - 5x + 4$ will intersect x axis exactly at two distinct points. True or False

1. Find the zeroes of the quadratic polynomial

 $x^2 + 7x + 12$ and verify the relation between

the zeroes and its coefficients.

Watch Video Solution

2. Find the zeroes of the quadratic polynomial $p(x) = 2x^2 + 5x - 12$ and verify the relationship between the zeroes and its coefficients.

3. Find the zeroes of the quadratic polynomial $p(x) = 4\sqrt{3}x^2 + 5x - 2\sqrt{3}$ and verify the relationship between the zeroes and its coefficients.

4. Find the zeroes of the quadratic polynomial

$$p(x) = abx^2 + ig(b^2 - acig)x - bc$$
 and verify

the relationship between the zeroes and its

coefficients.

5. If $lpha\,$ and eta are the zeroes of the polynomial $p(x)=ax^2+bx+c$ then find the following: (i) $lpha^2+eta^2$

6. If α and β are the zeroes of the polynomial $p(x) = ax^2 + bx + c$ then find the following: (ii) $\alpha^3 + \beta^3$

7. If lpha and eta are the zeroes of the polynomial $p(x)=ax^2+bx+c$ then find the following: (iii) $lpha^4+eta^4$

8. If α and β are the zeroes of the polynomial $p(x) = ax^2 + bx + c$ then find the following: (iv) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$

Watch Video Solution

11. If α and β are the zeroes of the polynomial $p(x) = ax^2 + bx + c$ then find the following: (vii) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$

12. If $lpha\,$ and $\,eta\,$ are the zeroes of the quadratic polynomial $\,p(x)=kx^2+4x+4$ such that $lpha^2+eta^2=24$ then find the value of k.

13. If the sum of squares of zeroes of the quadratic polynomial $p(x) = x^2 - 8x + k$ are

40 then find the value of k.

14. Find the condition that the zeroes of the polynomial $f(x) = x^3 - px^2 + qx - r$ may be in arithmetic progression.

Watch Video Solution

15. Find the zeroes of the polynomial $p(x) = x^3 - 5x^2 - 2x + 24$ if it is given that

the product of the two zeroes is 12.

16. Find the values of a and b such that the polynomial $x^4 + x^3 + 8x^2 + ax + b$ is divisible by $x^2 + 1$.