©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - R G PUBLICATION

TRIANGLES

Example

1. In $\triangle A B C$ two points L and M are taken in the sides AB and

AC such that $L M|\mid B C$ and $\mathrm{BL}=\mathrm{x}-3, \mathrm{AB}=2 \mathrm{x}, \mathrm{CM}=\mathrm{x}-2, \mathrm{AC}=2 \mathrm{x}+3$ then find the value of x.

- Watch Video Solution

2. In the given figure $D E\left|\mid B C\right.$,If $\frac{A D}{D B}=\frac{2}{3}$ and $\mathrm{AC}=18 \mathrm{~cm}$.then find $A E$.

- Watch Video Solution

3. In the given figure for what value of x will be ' $D E|\backslash| A B$?

- Watch Video Solution

4. In $\triangle A B C D$ and E are respectively two points on the side AB and $A C . A B=12 \mathrm{~cm}, A D=8 \mathrm{~cm}, A E=12 \mathrm{~cm}$ and $A C=18 \mathrm{~cm}$ then show that $D E|\mid B C$.
5. D and E are respectively the point on the sides $A B$ and $A C$ of a trinagle $A B C$ such that $D E|\mid B C$. Through the point E a line parallel to $C D$ is drawn which cut $A B$ at the point F then show that $A D^{2}=A B \times A F$

- Watch Video Solution

6. $A B C$ is an isosceles triangle with $A B=A C$ and D is a point on $A C$ such that $B C^{2}=A C \times C D$. Prove that $\mathrm{BD}=\mathrm{BC}$

- Watch Video Solution

7. If $\triangle A B C$ is similar to $\triangle D E F$ such that $\mathrm{BC}=4 \mathrm{~cm}, \mathrm{EF}=5 \mathrm{~cm}$ and area of $\triangle A B C=64 \mathrm{~cm}^{2}$. Determine the area of $\triangle D E F$
8. In $\triangle A B C$ if $A D \perp B C$ and $A D^{2}=B D \times D C$ then prove that, $\angle B A C=90^{\circ}$

D Watch Video Solution

9. D and E are two points on the sides $A C$ and $A B$ respectively of
$\triangle A B C$ such that $\triangle A D E \sim \triangle A B C$.If
$\mathrm{AD}=1.9 \mathrm{~cm}, \mathrm{AE}=3.6 \mathrm{~cm} . \mathrm{BE}=2.1 \mathrm{~cm}$. and $\mathrm{BC}=8.4 \mathrm{~cm}$.find DE .

- Watch Video Solution

10. D is a point on the side $B C$ of a triangle $A B C$ such that $\angle A D C=\angle B A C$.Show that $C A^{2}=C B . C D$.

- Watch Video Solution

11. If BD and CE are two altitudes of $\triangle A B C$,prove that $\frac{C A}{A B}=\frac{C E}{D B}$

- Watch Video Solution

12. $\triangle B A C$ and $\triangle B D C$ are two right-triangle on the same side of the base BC.If AC ans DB intersect each other at a point P,show that $A P \times P C=D P \times P B$.

- Watch Video Solution

13. If $B D$ is the perpendicular drawn from the vertex B of the right triangle $A B C$ to the hypotenuse $A C$,prove that(i) $B D^{2}=A D \times D C$
14. If $B D$ is the perpendicular drawn from the vertex B of the right triangle $A B C$ to the hypotenuse $A C$,prove that(ii) $A B^{2}=A D \times A C$

- Watch Video Solution

15. If $B D$ is the perpendicular drawn from the vertex B of the right triangle $A B C$ to the hypotenuse $A C$,prove that(iii) $B C^{2}=C D \times A C$

- Watch Video Solution

16. $A B C$ is an isosceles triangle with $A B=A C$ and D is a point on $A C$ such that $B C^{2}=A C \times C D$. Prove that $\mathrm{BD}=\mathrm{BC}$
17. If AD is the altitudè of $\triangle A B C$ and $\frac{B D}{D A}=\frac{D A}{D C}$ prove that $\triangle A B C$ is right-angled

- Watch Video Solution

18. D and E are respectively two points on the sides $A B$ and $A C$ of
$\triangle A B C$ such that $D E|\mid B C$. If $(\mathrm{AD}) /(\mathrm{DB})=2 / 3$ find $(\mathrm{BC}) /(\mathrm{DE})$

- Watch Video Solution

19. Of the trapezium $\mathrm{ABCD}, A B| | D C$ and $\mathrm{DC}=2 \mathrm{AB}$. If the line segment $E F$ drawn parallel to $A B$ meets $A D$ and $B C$ at the points Fand E respectively so that $(B E) /(E C)=3 / 4$ and the diagonal $D B$ meets $E F$ at the points G, prove that 7FE=11AB
20. $A B$ and $E F$ are two parallel line segments and D is the point of intersection of $B E$ and $A F$. C is a point on $A E$ such that
$C D|\mid A B$. If $\mathrm{AB}=6 \mathrm{~cm} ., \mathrm{EF}=10 \mathrm{~cm} ., \mathrm{BD}=4 \mathrm{~cm}$.,find the lengths of $C D$ and $D E$.

- Watch Video Solution

21. Prove that in two equiangular triangles the ratio of the corresponding sides and the ratio of the bisectors of the corresponding angles are equal. [The end-points of the bisectors are on the opposite sides of the angles.]

- Watch Video Solution

22. Prove that in two similar triangles the ratio of corresponding
sides is equal to the ratio of the corresponding altitudes.

- Watch Video Solution

23. If two sides and the median drawn to one of these two sides of a trlangle are proportional to the corresponding sides and median of another triangle,prove that the two triangles are similar.

- Watch Video Solution

24. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of the corresponding altitudes of the triangles.
25. Prove that the ratio of the areas of two similar triangle is equal to the square of the ratio of their corresponding medians.

D Watch Video Solution

26. Prove that the ratio of the areas of two similar triangles is
equal to the ratio of the squares of the bisectors of the corresponding angles of the triangles. [The end-points of the angular bisectors are on the opposite sides of the angles.]

- Watch Video Solution

27. Prove that the area of an equilateral triangle with sides equal to the sides of a square is half the area of the equilateral triangle with sides equal to the length of the diagonals of the square.
28. Find the length of the hypotenuse of the triangles whose other two sides are:(i) $6 \mathrm{~cm}, 8 \mathrm{~cm}$

- Watch Video Solution

29. Find the length of the hypotenuse of the triangles whose other two sides are:(ii) $24 \mathrm{~cm}, 7 \mathrm{~cm}$

D Watch Video Solution

30. Find the length of the hypotenuse of the triangles whose other two sides are:(iii) $5 \mathrm{~cm}, 12 \mathrm{~cm}$

- Watch Video Solution

31. In the $\triangle A B C, A B=p^{2}-q^{2}, B C=p^{2}+q^{2}$ and $C A=2 p q$ then prove that $\triangle A B C$ is right angled. Which of the angles of the triangle is right angle?

- Watch Video Solution

32. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squarea of its diagonals.

- Watch Video Solution

33. Prove that the sum of the squares drawn on the sides of a square is equal to the sum of the squares drawn on its diagonals.

- Watch Video Solution

34. If one side of an equilateral triangle measures 5 cm ,then find the measure of its altitude.

D Watch Video Solution

35. The sides of a triangle measure $13 \mathrm{~cm}, 12 \mathrm{~cm}$,and 5 cm .prove that the triangle is right angled.

- Watch Video Solution

36. Of the right triangle $A B C$,
$A B=a+b, B C=2 \sqrt{a b}$ and $\angle c=90^{\circ}$. Find AC .
37. Of the right triangle $\mathrm{PQR} P Q=a x-b y, Q R=b x+a y$ and $\angle Q$
$=$ Right angle then find PR
A. $Q=$ one-right
B.
C.
D.

Answer:

- Watch Video Solution

38. A man walked 7 km . to the north and then turning to the east,
walked 3 km .Finally he turned to the south and walked 3 km .Find
the minimum distance between the starting point and the finishing point of his journey.

(.) Watch Video Solution

39. $\angle Q o f \triangle P Q R$ is a right angle.If $\mathrm{PQ}=4 \mathrm{~cm}, \mathrm{QR}=3 \mathrm{~cm}$, then find the length of the median drawn from Q to PR .

- Watch Video Solution

40. The length of the hypotense of an isosecles right, triangle is $4 \sqrt{2}$. Find the length of its side.

- Watch Video Solution

41. If the length of the diagonals of a rhombusare 10 cm and 24 cm . then find the length of its sides.
42. If the length of one side of an equilateral triangle is 10 cm . then find the length of its altitude.

D Watch Video Solution

43. If the length of the diagonals of a rhombus are 18 cm and 24 cm . then find the length of sides.

- Watch Video Solution

44. If the length of one of the diagonals of a rhombus is 24 cm . and the length of one of its sides is 15 cm .find the length of the other diagonal.

- Watch Video Solution

45. If $\angle C$ of the isosceles triangle ABC is measure 90°, then prove that $A B^{2}=2 A C^{2}$.

D Watch Video Solution

46. If PS is the altitude on the base $\mathrm{QR} \triangle P Q R$, then prove that $P Q^{2}+S R^{2}=P R^{2}+Q S^{2}$

- Watch Video Solution

47. If ABCD is a square, then show that $A C^{2}=2 A B^{2}$

D Watch Video Solution

48. The sides of the quadrilateral $A B C D$ are not equal to one another and $A C \perp B D$ prove that $A B^{2}+C D^{2}=A D^{2}+B C^{2}$

- Watch Video Solution

49. P is any point inside the rectangle $A B C D$. Prove that $A P^{2}+C P^{2}=B P^{2}+D P^{2}$

- Watch Video Solution

50. Prove that the area of the equilateral triangle drawn on the hypotenuse of a right angle triangle is equal to the sum of the areas of the equilateral triangles drawn on the other two sides.

- Watch Video Solution

51. AD is the perpendicular from A and BC of $\triangle A B C$. If
$A B=c, B C=a, C A=b$ and $A D=x$ then prove that
$a=\sqrt{b^{2}-x^{2}}+\sqrt{c^{2}-x^{2}}$

- Watch Video Solution

52. Of triangle $\mathrm{ABC}, \angle B=90^{\circ}$ and $B D \perp A C$.IF $\mathrm{AB}=\mathrm{c}, \mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}$ and $\mathrm{BD}=\mathrm{p}$ then prove that,$\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{c^{2}}$.

D Watch Video Solution

53. The square of the length of the hypotenuse of an isosceles right triangle is $32 \mathrm{~cm}^{2}$.Find the length of the other two sides.

- Watch Video Solution

54. If one diagonal of a square measures $12 \sqrt{2} \mathrm{~cm}$. find the length of its side.
55. If one side of an equilateral triangle measures 10 cm . find its height.

- Watch Video Solution

56. The perimeter of two similar triangles are respectively 25 cm . and 15 cm . If one side of the first triangle is 9 cm .find the corresponding side of the second triangle.

- Watch Video Solution

57. In triangle $A B C, D$ and E are points on the sides $A B$ and $A C$ such that $\angle A E D=\angle C$. Prove that $\triangle A D E \sim \triangle A B C$
58. $\triangle B A C$ and $\triangle B D C$ are two right-triangle on the same side of the base $B C . I f ~ A C$ ans $D B$ intersect each other at a point P,show that $A P \times P C=D P \times P B$.

- Watch Video Solution

59. M is the mid point of the side CD of the parallelogram ABCD. The line $B M$ is drawn intersecting $A C$ in L and $A D$ produced Prove that (i) $A L \times L M=C L \times B L$

- Watch Video Solution

60. M is the mid point of the side CD of the parallelogram $A B C D$.

The line $B M$ is drawn intersecting $A C$ in L and $A D$ produced at E.Prove that(ii) EL = 2BL
61. In trapezium $\mathrm{ABCD}, A B| | D C$ and AC and BD diagonal intersect at the point E. Prove that (EA)/(EC)=(EB)/(ED).

- Watch Video Solution

62. The bisector of $\angle C$ and $\angle G$ of two similar triangle ABC and EFG are meet the side $A B$ and EF respectively at the point D and H.Prove that $\triangle D C A \sim \triangle H G E$

- Watch Video Solution

63. In the right triangleACB, $\angle C=90^{\circ}$ and $C D \perp A B$. Prove that, $\frac{B C^{2}}{A C^{2}}=\frac{B D}{A D}$
64. $P A \perp A C$ and $R C \perp A C$ such that $\mathrm{PA}=\mathrm{x}$ and $\mathrm{RC}=\mathrm{z}$.If PC and AR are intersect at thepoint Q, perpendicular distance from $A C$ is y then prove that $1 / x+1 / z=1 / y$.

- Watch Video Solution

65. If two triangles are equiangular then prove that the ratio of the corresponding sides is (i)Same as the ratio of the corresponding sides.

- Watch Video Solution

66. Prove that in two equiangular triangles the ratio of the corresponding sides and the ratio of the bisectors of the
corresponding angles are equal. [The end-points of the bisectors are on the opposite sides of the angles.]

- Watch Video Solution

67. If two triangles are equiangular then prove that the ratio of the corresponding sides is (iii)Same as the ratio of the corresponding altitude.

- Watch Video Solution

68. If one angle of a triangle is equal to one angle of another triangle and the bisectors of these equal angles divide the opposite side in the same ratio then show that the triangle are similar.
69. All circles are \qquad . (congruent, similar)

- Watch Video Solution

2. All squares are __-. (Similar, congruent)

- Watch Video Solution

3. All___ triangles are similar. (isosceles, equilateral)

- Watch Video Solution

4. Two polygons of the same number of sides are similar, if(a)

- Watch Video Solution

5. Two polygons of the same number of sides are similar, if(b) their corresponding sides are \qquad
A. (eqiial
B.
C.
D.

Answer:

- Watch Video Solution

6. Give two different examples of pair of(i) similar figures
7. Give two different examples of pair of((ii) non-similar figures

- Watch Video Solution

8. State whether following quadrilaterals are similar or not:

9. In fig(i) , $D E|\mid B C$.Find EC in (i).

- Watch Video Solution

10. E and F are points on the sides $P Q$ and $P R$ respectively of a
$\triangle P Q R$.For each of the following cases, state whether
$E F|\mid Q R:(\mathrm{i}) \mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$
11. E and F are points on the sides $P Q$ and $P R$ respectively of a $\triangle P Q R$.For each of the following cases, state whether $E F|\mid Q R$:(ii) $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$

- Watch Video Solution

12. E and F are points on the sides $P Q$ and $P R$ respectively of a $\triangle P Q R$.For each of the following cases, state whether $E F|\mid Q R:(\mathrm{iii}) \mathrm{PQ}=.1 .28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=$ 0.36 cm

- Watch Video Solution

13. In Fig., if $L M|\mid C B$ and $L N| \mid C D$,prove that $\frac{A M}{A B}=\frac{A N}{A D}$

- Watch Video Solution

14. In Fig. $D E \| A C$ and $D F \| A E$. Prove that $\frac{B F}{F E}=\frac{B E}{E C}$

- Watch Video Solution

15. In Fig. 6.20, $D E \| O Q$ and $D F \| O R$.Show that $E F|\mid Q R$.

- Watch Video Solution

16. In Fig., A, B and C are points on OP, OQ and OR respectively such that $A B \| P Q$ and $A C \| P R$. Show that $B C|\mid Q R$.

(D) Watch Video Solution

17. Using Theorem 6.1, prove that a line drawn through the midpoint of one side of a triangle parallel to another side bisects the third side.. (Recall that you have proved it in class IX).

- Watch Video Solution

18. Using Theorem 6.2, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done it in class IX).

- Watch Video Solution

19. ABCD is a trapezium in which $A B|\mid D C$ and its diagonals intersect each other at the point O.Show that $\frac{A O}{B O}=\frac{C O}{D O}$

- Watch Video Solution

20. The diagonals of a quadrilateral $A B C D$ intersect each other at the point O such that $(A O) /(B O)=(C O) /(D O)^{\prime}$. Show that $A B C D$ is a trapezium.
21. State which pairs of triangles in Fig. are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

D Watch Video Solution

22. State which pairs of triangles in Fig. are similar. Write the similarity criterion used by you for answering the question and
also write the pairs of similar triangles in the symbolic form:

- Watch Video Solution

23. State which pairs of triangles in Fig.are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

24. State which pairs of triangles in Fig.are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

- Watch Video Solution

25. State which pairs of triangles in Fig.are similar. Write the similarity criterion used by you for answering the question and
also write the pairs of similar triangles in the symbolic form:

- Watch Video Solution

26. State which pairs of triangles in are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

$\triangle O D C \sim \triangle O B A, \angle B O C=125^{\circ}$ and $\angle C D O=70^{\circ} \quad$ Find $\angle D O C, \angle D C O$, and $\angle O A B$.

- Watch Video Solution

28. Diagonals AC and BD of a trapezium ABCD with $A B|\mid D C$ intersect each other at the point O.Using a similarity ciiterion for two triangles, show that $\frac{O A}{O C}=\frac{O B}{O D}$.
29. In Fig. 6.36, $\frac{Q R}{Q S}=\frac{Q T}{P R}$ and $\angle 1=\angle 2$.Show that $\triangle P Q S \sim \triangle T Q R$

- Watch Video Solution

30. S and T are points on sides PR and QR of $\triangle P Q R$ such that $\angle P=\angle R T S$. Show that $\triangle R P Q \sim \triangle R T S$

- Watch Video Solution

31. In Fig.6.38,altitudes AD and CE of $\triangle A B C$ intersect each other at the point P.Show that:

$\triangle A E P \sim \triangle C D P$

- Watch Video Solution

32. In Fig.6.38,altitudes AD and CE of $\triangle A B C$ intersect each other at the point P.Show that:

(ii)

$\triangle A B D \sim \triangle C B E$

- Watch Video Solution

33. In Fig.6.38,altitudes $A D$ and $C E$ of $\triangle A B C$ intersect each other at the point P.Show that:

(iii)
$\triangle A E P \sim \triangle A D B$

- Watch Video Solution

34. In Fig.6.38,altitudes AD and CE of $\triangle A B C$ intersect each other at the point P.Show that:

(iv)
$\triangle P D C \sim \triangle B E C$

- Watch Video Solution

35. E is a point on the side AD produced of a parallelogram $A B C D$ and BE intersects CD at F . Show that $\triangle A B E \sim \triangle C F B$.

- Watch Video Solution

36. If Fig. 6.3 ,ABC and AMP are two right triangles right angled at B and M respectively.Prove that :(i) $\triangle A B C \sim \triangle A M P$

- Watch Video Solution

37. If Fig. 6.3 , ABC and AMP are two right triangles right angled at B and M respectively.Prove that :

$\frac{C A}{P A}=\frac{B C}{M P}$

- Watch Video Solution

38. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and $\triangle F E G$ respectively. If $\triangle A B C \sim \triangle F E G$.show that:(i) $\frac{C D}{G H}=\frac{A C}{F G}$
39. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and $\triangle F E G$ respectively. If $\triangle A B C \sim \triangle F E G$.show that:(ii) $\triangle D C B \sim \triangle H G E$

- Watch Video Solution

40. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and $\triangle F E G$ respectively. If $\triangle A B C \sim \triangle F E G$ show that:(iii) $\triangle D C A \sim \triangle H G F$

- Watch Video Solution

41. In Flg. 6.40, E is a point on side CB produced of an isosceles triangle ABC with $\mathrm{AB}=\mathrm{AC}$. If $A D \perp B C$ and $E F \perp A C$, prove that

$\triangle A B D \sim \triangle E C F$.

- Watch Video Solution

42. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respeetively proportional to sides $P Q$ and $Q R$ and median $P M$ of
$\triangle P Q R$ (see Fig. 6.41). Show that $\triangle A B C \sim \triangle P Q R$.

- Watch Video Solution

43. D is a point on the side $B C$ of a triangle $A B C$ such that $\angle A D C=\angle B A C$.Show that $C A^{2}=C B . C D$.

- Watch Video Solution

44. Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $P R$ and median $P M$ of
another triangle $P Q R$.Show that $\triangle A B C \sim \triangle P Q R$.

- Watch Video Solution

45. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long.Find the height of the tower.

- Watch Video Solution

46. If $A D$ and $P M$ are medians of triangles $A B C$ and PQR,respectively where $\triangle A B C \sim \triangle P Q R$,prove that $\frac{A B}{P Q}=\frac{A D}{P M}$.
47. Let $\triangle A B C \sim \triangle D E F$ and their areas be,respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$.If $\mathrm{EF}=15.4 \mathrm{~cm}$,find bc .

- Watch Video Solution

48. Diagonals of a trapezium ABCD with $A B|\mid D C$ intersect each other at the point O.If $A B=2 C D$,find the ratio of the areas of triangle AOB and COD.
49. If Fig.6.44 $A B C$ and DBC are two triangles on the same base BC.If AD intersects BC atb O,show that $\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(D B C)}=\frac{A O}{D O}$

- Watch Video Solution

50. If the areas of a similar triangle are equal,prove that they are congruent.

- Watch Video Solution

51. D, E and F are respectively the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$.Find the ratio of the areas of $\triangle D E F$ and $\triangle A B C$.

- Watch Video Solution

52. Prove that the ratio of the areas of two similar triangle is equal to the square of the ratio of their corresponding medians.

- Watch Video Solution

53. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.
54. $A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of $B C$.Ratio of the areas of triangle $A B C$ and $B D E$ is
a) $2: 1$ b) $1: 2$ c) $4: 1$ d) $1: 4$
A. 2:1
B. 1: 2
C. $4: 1$
D. 1: 4

Answer:

- Watch Video Solution

55. Sides of two similar triangle are in the ratio 4:9.Areas of these triangle are in the ratio
a) $2: 3$ b) $4: 9$ c) $81: 16$ d) $16: 81$
A. $2: 3$
B. $4: 9$
C. $81: 16$
D. 16: 81

Answer:

- Watch Video Solution

56. Sides of triangle are given below.Determine which of them are right triangles.In case of a right triangle,write the length of its hypotenuse.(i) $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$

- Watch Video Solution

57. Sides of triangle are given below.Determine which of them are right triangles.In case of a right triangle,write the length of its hypotenuse.((ii) $3 \mathrm{~cm}, 5 \mathrm{~cm}, 6 \mathrm{~cm}$

- Watch Video Solution

58. Sides of triangle are given below.Determine which of them are right triangles.In case of a right triangle,write the length of its hypotenuse.((iii) $50 \mathrm{~cm}, 80 \mathrm{~cm}, 100 \mathrm{~cm}$

- Watch Video Solution

59. Sides of triangle are given below.Determine which of them are right triangles.In case of a right triangle,write the length of its hypotenuse.((iv) $13 \mathrm{~cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$
60. $P Q R$ is a triangle right angled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that $P M^{2}=Q M . M R$.

- Watch Video Solution

61. In Fig.6.53,ABD is a triangle right angle at A and $A C \perp B D$
.Show that

(i)
$A B^{2}=B C . B D$.

- Watch Video Solution

62. In Fig.6.53,ABD is a triangle right angle at A and $A C \perp B D$
.Show that

(ii)
$A C^{2}=B C . D C$.

- Watch Video Solution

63. In Fig.6.53,ABD is a triangle right angle at A and $A C \perp B D$
.Show that

(iii)
$A D^{2}=B D . C D$.

- Watch Video Solution

64. $A B C$ is an isosceles triangle right angled at C.Prove that $A B^{2}=2 A C^{2}$.
65. ABC is an isosceles triangle with $\mathrm{AC}=\mathrm{BC}$. If $A B^{2}=2 A C^{2}$.prove that $A B C$ is a right triangle.

(Watch Video Solution

66. $A B C$ is an equilateral triangle of sides $2 a$.Find each of its altitudes.

- Watch Video Solution

67. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squarea of its diagonals.

- Watch Video Solution

68. In Fig. $6.45,0$ is a point in the interior of a triangle $A B C$, $O D \perp B C, O E \perp A C$ and $O F \perp A B$. Show that

(i)

$$
O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}
$$

69. Fig.6.45, 0 is a point in the interior of a triangle $A B C$, $O D \perp B C, O E \perp A C$ and $O F \perp A B$.Show that

(ii)
$A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}$
70. A ladder 10 m long reaches a window 8 m above the ground.

Find the distance of the foot of the ladder from base of the wall.

- Watch Video Solution

71. A guy wire attached to a vertical pole of heigh 18 m is 24 m long and has a stake attached to the other end. How far from the base of tho pole should the stake be driven so that the wire will be taut?

- Watch Video Solution

72. An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same time another aeroplane leaves
the same airport and flies due west at a speed of 1200 km per hour. How far apart will be the twö planes after $1\left(\frac{1}{2}\right)$ hours?.

- Watch Video Solution

73. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m , find the distance between their tops.

- Watch Video Solution

74. D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angled at C.Prove that, $A E^{2}+B D^{2}=A B^{2}+D E^{2}$.

- Watch Video Solution

75. The perpendicular from A on side BC of a $\triangle A B C$ intersects
$B C$ at D such that $D B=3 C D$ (see Fig. 6.55). Prove that
$2 A B^{2}=2 A C^{2}+B C^{2}$.

- Watch Video Solution

76. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $\mathrm{BD}=1 / 3 \mathrm{BC}$.Prove that $9 A D^{2}=7 A B^{2}$

(D)
 Watch Video Solution

77. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

D Watch Video Solution

78. Tick the correct answer and a justify :In
$\triangle A B C, A B=6 \sqrt{3}, A C=12 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$. The angle B is
a) 120° b) 60° c) 90° d) 45°
A. 120°
B. 60°
C. 90°
D. 45°

Answer:

79. In Fig.6.56,PS is the bisector of $\angle Q P R o f \triangle P Q R$. Prove that $\frac{Q S}{S R}=\frac{P Q}{P R}$.

- Watch Video Solution

80. In Fig.6.57,
$\triangle \mathrm{D}$ is point on hypothenuse AC of $\triangle A B C$, such that $B D \perp A C, D M \perp B C$ and $D N \perp A B$.Prove that
$D M^{2}=D N . M C$
81. In Fig.6.58,

$A B C$ is a
triangle in which $\angle A B C>90^{\circ}$ and $A D \perp C B$ produced.Prove that $A C^{2}=A B^{2}+B C^{2}+2 B C . B D$.

- Watch Video Solution

82. In Fig.6.59,

triangle in which $\angle A B C<90^{\circ}$ and $A D \perp B C$.Prove that

$$
A C^{2}=A B^{2}+B C^{2}-2 B C . B D
$$

- Watch Video Solution

83. In Fig.6.60,

median of a triangle ABC and $A M \perp B C$. Prove that :(i) $A C^{2}=A D^{2}+B C \cdot D M+\left(\frac{B C}{2}\right)^{2}$
84. In Fig.6.60,

median of a triangle ABC and $A M \perp B C$.Prove that :(ii) $A B^{2}=A D^{2}-B C . D M+\left(\frac{B C}{2}\right)^{2}$
85. In Fig.6.60,

$A D$ is a
median of a triangle ABC and $A M \perp B C$.Prove that :(iii) $A C^{2}+A B^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$
86. In Fig.6.61,

$A B$ and $C D$ intersect each other at the point P.Prove that :(i)
$\triangle A P C \sim \triangle D P B$

- Watch Video Solution

87. In Fig.6.61,

two
chords
$A B$ and $C D$ intersect each other at the point P.Prove that :
(ii)PA.PB=CP.DP

(Watch Video Solution

88. In Fig.6.62,

two chords
$A B$ and $C D$ of a circle intersect each other at the point P (when produced)outside the circle.Prove that (i) $\triangle P A C \sim \triangle P D B$

- Watch Video Solution

89. In Fig.6.62,

two chords
$A B$ and $C D$ of a circle intersect each other at the point P (when produced)outside the circle.Prove that (ii)PA.PB=PC.PD

- Watch Video Solution

90. State basic proportionality theorem.
91. In the adjoining figure,

and $\mathrm{AD}=1 \mathrm{~cm}, \mathrm{BD}=2 \mathrm{~cm}$. What is the ratio of the area of $\triangle A B C$ to the area of $\triangle A D E$?

- Watch Video Solution

92. The areas of two similar triangles are $169 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$
respectively.If the longest side of the larger triangle is 26 cm .what is the length of longest side of the smaller triangle.
93. If $\triangle A B C$ and $\triangle D E F$ are similar triangle such that $\angle A=57^{\circ}$ and $\angle E=73^{\circ}$, what is the measure of $\angle F$?

D Watch Video Solution

94. If the altitude of two similar triangle are in the ratio 2:3 what is the ratio of their areas?

- Watch Video Solution

95. State Pythagoras theorem.

- Watch Video Solution

96. The lengths of the diagonals of a rhombus are 30 cm and 40 cm .Find the side of the rhombus.

- Watch Video Solution

97. In an isosceles $\triangle A B C$ if $A C=B C$ and $A B^{2}=2 A C^{2}$ then what is the measure of $\angle C$?

- Watch Video Solution

98. What is the height of an equilateral triangle having each side 12 cm ?

- Watch Video Solution

99. Sides of two similar triangle are in the ratio 4:9.Areas of these triangle are in the ratio
a)2: 3 b) $4: 9$ c) $81: 16$ d) $16: 81$
A. 16: 81
B. $81: 16$
C. $4: 9$
D. 2: 3

Answer:

- Watch Video Solution

100.

$\triangle A B C \sim \triangle D E F$ such
that
ar
$(\triangle A B C)=36 \mathrm{~cm}^{2}$ and $(\triangle D E F)=49 \mathrm{~cm}^{2}$. Then the ratio of their corresponding sides is
A. $6: 7$
B. $7: 6$
C. $\sqrt{6}: \sqrt{7}$
D. $36: 49$

Answer:

- Watch Video Solution

101. $\triangle A B C$ and $\triangle D E F$ are two equilateral triangle such that D is the mid point of $B C$. The ratio of the areas of triangle $A B C$ and BDE is
A. 1:2
B. 2: 1
C. $4: 1$
D. 1: 4

Answer:

- Watch Video Solution

102. Two isosceles triangles have their corresponding angles equal and their areas are in the ratio 25:36. The ratio of their corresponding heights is
A. $5: 6$
B. $6: 5$
C. $25: 36$
D. $36: 25$

Answer:

103. If D, E, F are the mid-point of sides $A B, B C$ and $C A$ respectively of \triangle then the ratio of the areas of triangles $\triangle D E F$ and $A B C$ is
A. 1:2
B. 2: 3
C. 1: 4
D. 4: 5

Answer:

- Watch Video Solution

104. In a $\triangle A B C, \angle A=90^{\circ}, \mathrm{AB}=5 \mathrm{~cm}$ and $\mathrm{AC}=12 \mathrm{~cm}$.lf $A D \perp B C$ then the value of $A D$ will be
a) $60 / 13 \mathrm{~cm} \mathrm{~b}) 1 / 60 \mathrm{~cm} \mathrm{c)} 13 / 2 \mathrm{~cm} \mathrm{d)} \frac{2 \sqrt{12}}{13} \mathrm{~cm}$
A. $60 / 13 \mathrm{~cm}$
B. $1 / 60 \mathrm{~cm}$
C. $13 / 2 \mathrm{~cm}$
D. $\frac{2 \sqrt{12}}{13} \mathrm{~cm}$

Answer:

- Watch Video Solution

105. In an equilateral triangle ABC if $A D \perp B C$ then $A D^{2}=$ a) $C D^{2}$ b) $2 C D^{2}$ c) $3 C D^{2}$ d) $4 C D^{2}$
A. $c d^{2}$
B. $2 C D^{2}$
C. $3 C D^{2}$
D. $4 C D^{2}$

Answer:

- Watch Video Solution

106. If in $\triangle A B C$ and $\triangle D E F, \frac{A B}{D E}=\frac{B C}{F D} \quad$ then $\triangle A B C \sim \triangle D E F$ when
A. $\angle B=\angle D$
B. $\angle A=\angle D$
C. $\angle A=\angle F$
D. $\angle B=\angle E$

Answer:

- Watch Video Solution

107. In an isosceles $\triangle A B C, \angle C=90^{\circ}$.If $\mathrm{AC}=6 \mathrm{~cm}$ then the value of $A B$ will be __-
a) 6 cm b) $2 \sqrt{6} \mathrm{~cm}$ c) $4 \sqrt{2} \mathrm{~cm}$ d) $6 \sqrt{2}$
A. 6 cm
B. $2 \sqrt{6} \mathrm{~cm}$
C. $4 \sqrt{2} \mathrm{~cm}$
D. $6 \sqrt{2}$

Answer:

- Watch Video Solution

108. If in $\triangle A B C$ and $\triangle P Q R$ we have $\frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$ then
A. $\triangle P Q R \sim \triangle A B C$
B. $\triangle P Q R \sim \triangle C A B$
C. $\triangle C B A \sim \triangle P Q R$
D. $\triangle B C A \sim \triangle P Q R$

Answer:

- Watch Video Solution

