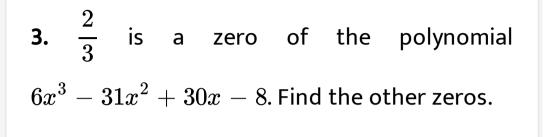


MATHS

BOOKS - KALYANI MATHS (ASSAMESE ENGLISH)

DIVISION ALGORITHM OF POLYNOMIALS


1. Divide $7x^4 - 2x^2 + 62x + 2$ by $4x - 8 - 2x^2$ and establish the relation that Dividend= Divisor×Quotient+ Remainder.

Watch Video Solution

2. If a polynomial $6x^4 + 8x^3 + 17x^2 + 21x + 7$ is divided by another polynomial $3x^2 + 4x + 1$ the remainder comes out to be ax + b ,find a and b.

Watch Video Solution

4. If $2\pm\sqrt{3}$ are zeroes of the polynomial $2x^4-5x^3-12x^2+11x-2$,then find the other zeros.

1. Divide:

 $x^4+5x^3+13x^2+21x+12$ by x^2+3x+2 and establish the relation that Dividend=

Divisor × Quotient + Remainder

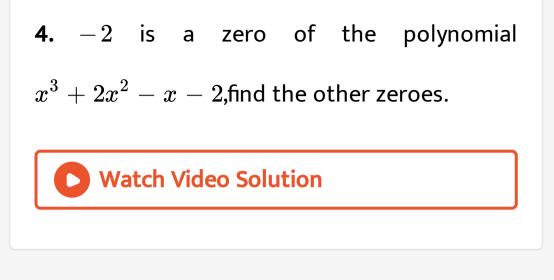
Watch Video Solution

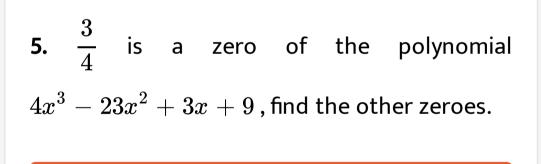
2. Divide:

 $x^5 - 4x^3 + x^2 + 3x + 1$ by $x^3 - 3x + 1$ and

establish the relation that Dividend= Divisor ×

Quotient + Remainder


Watch Video Solution


3. Divide:

 $6x^4 + 8x^3 + 17x^2 + 21x + 7$ by

 $3x^2 + 4x + 1$ and establish the relation that

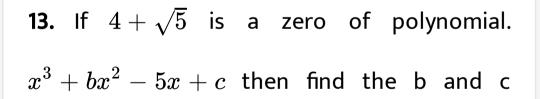
Dividend= Divisor × Quotient + Remainder

6. $\frac{4}{5}$ is a zero of the polynomial $10x^3 - 23x^2 + 2x + 8$, find the other zeroes.

Watch Video Solution

7. If the polynomial $6x^4 + 8x^3 + 17x^2 + 21x + 7$ is divided by another polynomial $3x^2 + 4x + 1$,the remainder cames out to be (ax+b),find out a and b.

8. Find the value of a and b so that $x^4 + x^3 + 8x^2 + ax + b$ is divisible by $x^2 + 1$.

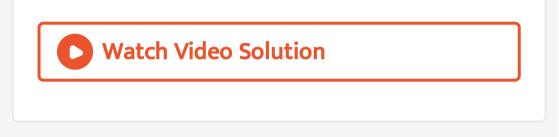

Watch Video Solution

9. Find the value of a and b so that $6x^4 + 8x^3 - 5x2 + ax + b$ is divisible by $2x^2 - 5.$

10. If $-\sqrt{2}$ and $\sqrt{2}$ are the two zeroes of the polynomial $2x^4 - 3x^3 - 3x^2 + 6x - 2$ find the other two zeroes. Watch Video Solution 11. If two zeroes of the polynomial $x^4-6x^3-26x^2+138x-35$ are $2\pm\sqrt{3}$ find other zeroes. Watch Video Solution

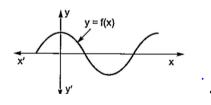
12. If $3 - \sqrt{2}$ is a zero of polynomial. $x^3 + bx^2 + 13x + c$,then find the b and c where b and c are rational numbers.

where b and c are rational numbers.


14. If a polynomial f(x) is divided by x - a, whose quotient is g(x) and remainder r(x).express f(x) in term of others.

Watch Video Solution

15. If lpha, eta, are the zeroes of the polynomial $ax^2 + bx + c$,then $lpha^2 + eta^2$ =


16. If $2+\sqrt{3}$ is a zero of a quadratic

polynomial.write the other zero of it.

17. Write the number of zeros of the

polynomial f(x) whose graph is

$$p^4+q^4=ig(p^2+xpq+q^2ig),ig(p^2-xpq+q^2ig)$$

.Find the value of x.

19. Fill in the blank:

The degree of a zero polynomial zero is

20. Fill in the blank:

The of a polynomial are the xcoordinates of the point of intersection i.e. where y coordinate is _____. Watch Video Solution **21**. Fill in the blank: The product of zeros of the polynomial

 $3x^2 - 7x + 6$ is

22. Fill in the blank: The sum of zeroes in the polynomial $ax^2 - bx + c$ is _____.

Watch Video Solution

23. Fill in the blank:

Degree of remainder of the division of a

polynomial is less than a degree of _____.

24. The graph of a linear polynomial cross the

x-axis

A. Once

B. Twice

C. Three

D. None

Answer:

25. If lpha and eta are the zeros of the polynomial $3x^2+8x+5$ then find the sum of zeros

A.
$$\frac{8}{5}$$

B. $-\frac{8}{5}$
C. $\frac{8}{7}$
D. $\frac{7}{8}$

Answer:

26. If α and β are the zeros of the polynomial $x^2 + bx + c$ the polynomial having $\frac{1}{\alpha}, \frac{1}{\beta}$ as its zero is

A.
$$x^2 + cx + b$$

$$\mathsf{B.}\,x^2-cx+b$$

C.
$$cx^2 + bx + 1$$

Answer:

27. If zeros of the polynomial $x^2 - bx + c$ be

reciprocal to each other then b equals to

A. b

B. 1

C. -1

D. 1/b

Answer:

28. If the zeros of polynomial $x^2 + bx - c$ are

equal and opposite then b equals to

A. b

B.-b

C. 1

D. 0

Answer: