

MATHS

BOOKS - KALYANI MATHS (ASSAMESE ENGLISH)

Division Algorithm of Polynomials

Example

1. Divide $7x^4 - 2x^2 + 62x + 2$ by $4x - 8 - 2x^2$ and establish the relation that

Dividend= Divisor×Quotient+ Remainder.

Watch Video Solution

2. If a polynomial $6x^4 + 8x^3 + 17x^2 + 21x + 7$ is divided by another polynomial $3x^2 + 4x + 1$ the remainder comes out to be ax + b ,find a and b.

3. $\frac{2}{3}$ is a zero of the polynomial $6x^3 - 31x^2 + 30x - 8$. Find the other zeros.

Watch Video Solution

4. If $2\pm\sqrt{3}$ are zeroes of the polynomial $2x^4-5x^3-12x^2+11x-2$,then find the

other zeros.

1. Divide:

 $x^4+5x^3+13x^2+21x+12$ by x^2+3x+2

and establish the relation that Dividend= Divisor × Quotient + Remainder

> Watch Video Solution

2. Divide:

 $x^5 - 4x^3 + x^2 + 3x + 1$ by $x^3 - 3x + 1$ and

establish the relation that Dividend= Divisor × Quotient + Remainder

3. Divide:

$$6x^4 + 8x^3 + 17x^2 + 21x + 7$$
 by

 $3x^2 + 4x + 1$ and establish the relation that

Dividend= Divisor × Quotient + Remainder

7. If the polynomial $6x^4 + 8x^3 + 17x^2 + 21x + 7$ is divided by another polynomial $3x^2 + 4x + 1$,the remainder cames out to be (ax+b),find out a and b.

Watch Video Solution

10. If $-\sqrt{2}$ and $\sqrt{2}$ are the two zeroes of the polynomial $2x^4 - 3x^3 - 3x^2 + 6x - 2$ find

the other two zeroes.

11. If two zeroes of the polynomial $x^4-6x^3-26x^2+138x-35$ are $2\pm\sqrt{3}$

.find other zeroes.

Watch Video Solution

12. If $3-\sqrt{2}$ is a zero of polynomial. $x^3+bx^2+13x+c$,then find the b and c

where b and c are rational numbers.

13. If $4 + \sqrt{5}$ is a zero of polynomial.

 x^3+bx^2-5x+c then find the b and c

where b and c are rational numbers.

Watch Video Solution

14. If a polynomial f(x) is divided by x - a, whose quotient is g(x) and remainder r(x).express f(x) in term of others.

15. If α, β , are the zeroes of the polynomial

$$ax^2+bx+c$$
,then $lpha^2+eta^2$ =

Watch Video Solution

16. If $2+\sqrt{3}$ is a zero of a quadratic

polynomial.write the other zero of it.

17. Write the number of zeros of the polynomial f(x) whose graph is $\underbrace{f(x)}_{x} \underbrace{f(x)}_{y} \underbrace{f($

18.

 $p^4 + q^4 = ig(p^2 + xpq + q^2 ig), ig(p^2 - xpq + q^2 ig)$

lf

.Find the value of x.

•____•

The degree of a zero polynomial zero is

20. Fill in the blank:

The _____ of a polynomial are the x-

coordinates of the point of intersection i.e.

where y coordinate is _____.

21. Fill in the blank:

The product of zeros of the polynomial $3x^2-7x+6$ is

Watch Video Solution

22. Fill in the blank:

The sum of zeroes in the polynomial $ax^2 - bx + c$ is _____.

23. Fill in the blank:

Degree of remainder of the division of a

polynomial is less than a degree of _____.

24. The graph of a linear polynomial cross the

x-axis

A. Once

B. Twice

C. Three

D. None

Answer:

25. If α and β are the zeros of the polynomial

 $3x^2 + 8x + 5$ then find the sum of zeros

A.
$$\frac{8}{5}$$

B. $-\frac{8}{5}$

C.
$$\frac{8}{7}$$

D. $\frac{7}{8}$

Answer:

26. If α and β are the zeros of the polynomial $x^2 + bx + c$ the polynomial having $\frac{1}{\alpha}, \frac{1}{\beta}$ as its zero is

A.
$$x^2 + cx + b$$

B.
$$x^2 - cx + b$$

$$\mathsf{C.}\, cx^2 + bx + 1$$

D. None

Answer:

Watch Video Solution

27. If zeros of the polynomial $x^2 - bx + c$ be

reciprocal to each other then b equals to

B. 1

C. -1

D. 1/b

Answer:

Watch Video Solution

28. If the zeros of polynomial $x^2 + bx - c$ are

equal and opposite then b equals to

B.-b

C. 1

D. 0

Answer: