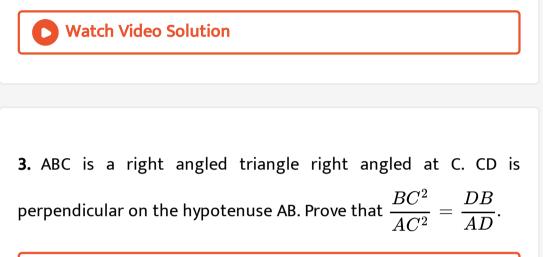

MATHS


BOOKS - KALYANI MATHS (ASSAMESE ENGLISH)

PYTHAGORAS THEOREM

Example

1. ABC is a right angled triangle right angled at C. CD is perpendicular on the hypotenuse AB. Prove that $\frac{AC^2}{BC^2} = \frac{AD}{DB}$

Watch Video Solution

4. The perpendicular from C on the side AB of a triangle ABC intersect AB at D and BD = mAD. Prove that $(m+1)BC^2 = (m+1)AC^2 + (m-1)AB^2$.

5. In the triangle ABC, $BC + CA = m^2 + 2mn - n^2$, $CA + AB = (m + n)^2$ and $AB + BC = 2m^2$. Show that it is a right angled triangle. Watch Video Solution

1. The length of a diagonal of a square is 16cm. Find the length of

the side of it.

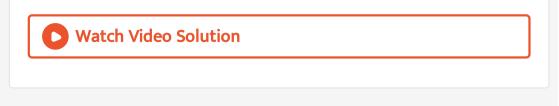
Exercise

Watch Video Solution

2. The length of the hypotenuse of an isosceles right angled triangle is $8\sqrt{2}cm$. Find the length of the other two sides.

3. If the length of a diagonal of a square is 2a' prove that its area is $2a^2$.

4. In an equilateral triangle with side 'a' prove that its altitudes =


$$\frac{\sqrt{3}}{2}a$$
 and its area = $\frac{\sqrt{3}}{4}a^2$.

Watch Video Solution

5. ABC is an isosceles triangle right angled at C.Prove that $AB^2 = 2AC^2$.

6. If x and y are the mid-points of the sides CA and CB respectively

of a $\ \Delta \, ABC$ right angled at C. prove that $4Ay^2 = 4AC^2 + BC^2$

7. If PB and AQ are the medians of a ΔABC right angled at C.

Prove that

 $4AQ^2 = 4AC^2 + BC^2$

Watch Video Solution

8. If PB and AQ are the medians of a ΔABC right angled at C.

Prove that

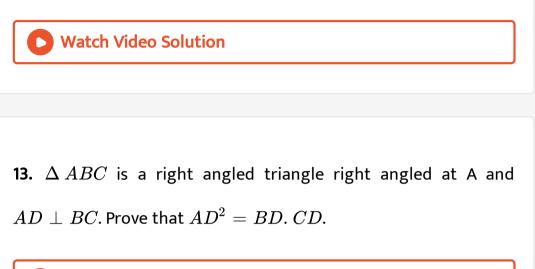
 $4BP^2 = 4BC^2 + AC^2$

9. If PB and AQ are the medians of a ΔABC right angled at C.

Prove that

 $4\left(AQ^2+BP^2
ight)=5AB^2$

Watch Video Solution

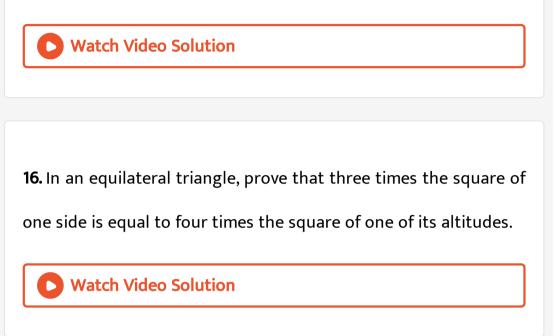

10. ABC a right angle triangle, right angled at B. AD and CE are the medians drawn from A and C respectively. If AC = 5m and $AD = \frac{3\sqrt{5}}{2}m$, find the length of CE.

11. P and Q are points on the sides CA and CB of a $~\Delta\,ABC$, right

angled at C. Prove that $AQ^2 + BP^2 = AB^2 + PQ^2$.

Watch Video Solution

12. In ΔABC , $AD \perp BC$ such that $AD^2 = BD$. CD. Prove that ΔABC is right angled at A.



Watch Video Solution

14. ΔABC is a right angled at B and D is mid-point of BC. Prove

that $AC^2 = 4AD^2 - 3AB^2$.

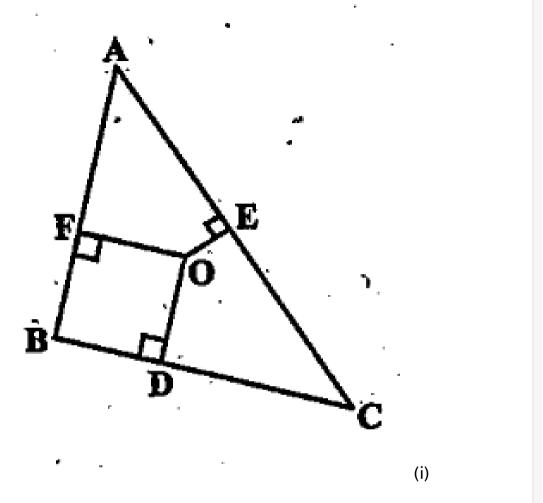
15. ΔPQR is right angled at Q and the points S and T trisect the side QR. Prove that $8PT^2 = 3PR^2 + 5PS^2$.

17. In an equilateral triangle ABC, D is a point on side BC such that

BD =1/3BC.Prove that $9AD^2 = 7AB^2$

18. ΔABC is right angled at C and $CD \perp AB$. If BC = a , CA = b , AB = c and CD = p. Then prove that cp = ab

19. Of triangle ABC, $\angle B = 90^{\circ}$ and $BD \perp AC$.IF AB=c, BC=a, CA=b and BD=p then prove that , $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{c^2}$. Watch Video Solution


20. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m, find the distance between their tops.

21. Two poles of height 10m and 15m stand vertically on a plane ground. If the distance between their feet is $5\sqrt{3}m$, find the distance between their tops.

Watch Video Solution

22. In Fig.6.45,O is a point in the interior of a triangle ABC, $OD \perp BC, OE \perp AC$ and $OF \perp AB$.Show that

 $OA^2 + OB^2 + OC^2 - OD^2 - OE^2 - OF^2 = AF^2 + BD^2 + CE^2$

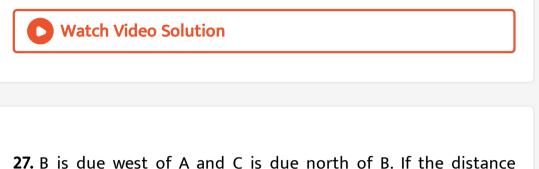
23. O is a point in the interior of ΔABC . OD,OE and OF are the perpendicular drawn to the sides BC, CA and AB respectively. Prove that

$$AF^{2} + BD^{2} + CE^{2} = AE^{2} + BF^{2} + CD^{2}.$$

Watch Video Solution

24. O is any point inside a rectangle ABCD. Prove that $OB^2 + OD^2 = OA^2 + OC^2$.

Watch Video Solution


25. Prove that the sum of the squares of the sides of a rhombus is

equal to the sum of the squarea of its diagonals.

26. A ship rail 25km due south and then 60km due west. How far

it is then from the starting point.

between B and C is 48km and the distance between A and C is 73km. Find the distance between A and B.

28. A man travels 27km due south then 24km due west. Finally

20km due north. How far is he from the starting point?

29. An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same time another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. How far apart will be the twö planes after $1\left(\frac{1}{2}\right)$ hours?.

Watch Video Solution

30. In an isosceles triangle ABC if AC = BC and $AB^2 = 2AC^2$,

prove that $\angle C$ is a right angle.

31. The length of the sides of a triangle are ax - by,ay + bx and

 $\sqrt{\left(a^2+b^2
ight)\left(x^2+y^2
ight)}$. Show that it is a right angled triangle.

32. The length of the sides of a triangle are a+b,ab-1 and

 $\sqrt{\left(a^2+1
ight)\left(b^2+1
ight)}.$ Show that it is a right angled triangle.

Watch Video Solution

33. In the triangle ABC, $BC = m^2 - n^2$, AC = 3mn and $AB = m^2 + n^2$. Prove that it is a right angled triangle.

Watch Video Solution

34. The perimeter of two similar triangles are respectively 25cm. and 15 cm. If one side of the first triangle is 9 cm.,find the corresponding side of the second triangle.

35. X is point on PQ and Y is a point on PR of a ΔPQR such that

$$XY \mid \ \mid QR.$$
 If $rac{PQ}{XQ} = rac{7}{3}$ and $PR = 6.3cm$, find YR

Watch Video Solution

36. Corresponding sides of two similar triangles are in the ratio 2:3. If the area of the similar triangle is $48cm^2$, find the area of the larger triangle.

37. The areas of two similar triangles ABC and PQR are in the ratio

9:16. If BC = 4.5cm , find the length of QR.

38. In a right angle triangle the length of the sides adjacent to the right angle and \sqrt{a} and $\sqrt{1-a}$. Find the length of the hypotenuse.

Watch Video Solution
39. All squares are (Similar, congruent)
Watch Video Solution
40. Fill in the gap :
All rectangles are
Watch Video Solution

41. Fill in the gap :

The ratio of the areas of two similar triangles is equal to the

square of the ratio of their _____.

 Watch Video Solution

42. Fill in the gap :

Two triangles are similar if their _____ sides are proportional.

Watch Video Solution

43. Fill in the gap :

Pythagoras Theorem states that in a right angle, the square of

hypotenuse is _____ to the sum of the square of the other two

sides.

44. In $\ \Delta \ LMN$, $\ \angle L = 60^\circ$, $\ \angle M = 50^\circ.$ If $\ \Delta \ LMN$ ~ $\ \Delta \ PQR$, Then the value of $\ \angle R$ is

A. 40°

 $\mathsf{B.}\,30°$

C. 70°

D. $110\,^\circ$

Answer:

Watch Video Solution

45. ABC and BDE are two equilateral triangles such that D is the mid-point of BC.Ratio of the areas of triangle ABC and BDE is a(2:1 b)(1:2 c)(4:1 d)(1:4)

A. 2:1

B.1:2

C.4:1

D. 1:4

Answer:

Watch Video Solution

46. Sides of two similar triangle are in the ratio 4:9. Areas of these

triangle are in the ratio

a)2:3 b)4:9 c)81:16 d)16:81

A. 2:3

B.4:9

C. 81:16

D. 16:81

Answer:

47. Length of an altitude of an equilateral triangle of side ' $2a\,{}^{\prime}cm$

is

 $\mathsf{A.}\,3acm$

B. $\sqrt{3}acm$

C.
$$\frac{\sqrt{3}}{2}acm$$

D.
$$2\sqrt{3}acm$$

Answer:

48. ΔABC is an isosceles triangle in which $\angle C = 90^{\circ}$. If AC = 6cm, Then AB is

A. $6\sqrt{2}cm$

 $\mathsf{B.}\,6cm$

 $C. 2\sqrt{6}cm$

D. $4\sqrt{2}cm$

Answer: